DOI QR코드

DOI QR Code

Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide

쑥을 이용한 과산화수소 정량 바이오센서의 전기화학적 성질

  • Lee, Beom-Gyu (Department of Chemistry, Chosun University) ;
  • Park, Sung-Woo (Department of Scientific Criminal Investigation, Graduate School of Peace and Security Studies, Chungnam National University) ;
  • Yoon, Kil-Joong (Division of Applied Sciences, Cheongju University)
  • 이범규 (조선대학교 자연과학대학 화학과) ;
  • 박성우 (충남대학교 평화안보대학원 과학수사과) ;
  • 윤길중 (청주대학교 이공대학 응용과학부)
  • Received : 2005.11.01
  • Accepted : 2006.01.10
  • Published : 2006.02.27

Abstract

A mugwort-tissue-based modified carbon paste electrode was constructed for the amperometric detection of hydrogen peroxide and its electrochemical properties are described. Especially the amperometric signal was very stable and bigger than any other enzyme electrode studied in this lab. The effect of tissue composition on the response was linear within the wide range of experiment and the linearity of Lineweaver-Burk plot showed that the sensing process of the biosensor is by enzymatic catalysis. And pH dependent current profile connoted that two isozymes are active in this system.

탄소반죽에 쑥조직을 혼입시켜 과산화수소 정량 바이오센서를 제작하고 그것의 전기화학적 성질을 조사하였다. 다른 생체조직을 이용하여 제작한 센서와 비교할 때, 생촉매 안정성이 뛰어났으며, 보다 큰 감응신호를 보여주었다. 조직의 함량 변화에 따른 신호의 변화는 넓은 범위에 걸쳐 직선성을 보여 주었고, Lineweaver-Burk 도시의 직선성은 전극 감응이 효소 촉매작용에 의하여 조절되고 있음을 보였다. 또 감응전류의 pH 의존성 변화는 센서가 두 종류의 동위효소를 포함하고 있음을 암시하였다.

Keywords

References

  1. L. C. Clark, Jr. and C. Lyons, Ann. N. Y. Acad. Sci., 102, 29 (1962) https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  2. S. J. Updike and G. P. Hicks, Nature, 214, 986 (1967) https://doi.org/10.1038/214986a0
  3. B. L. Ruiz, E. Dempsey, C. Hua, M. R. Smyth and J. wang, Anal. Chim. Acta, 273, 425-430 (1993) https://doi.org/10.1016/0003-2670(93)80186-O
  4. H. Kano, K. Morikage, B. Uno, Y. Esaka and M. Goto, Anal. Chim. Acta, 299, 69-74 (1994) https://doi.org/10.1016/0003-2670(94)00318-1
  5. C. L. Rosa, F. Pariente, L. Hernandez and E. Lorenzo, Anal. Chim. Acta, 308, 129-136 (1955)
  6. M. Bonakdar, J. L. Vilchez and H. A. Mottola, J. Electroanal. Chem., 266, 47-55 (1989) https://doi.org/10.1016/0022-0728(89)80214-1
  7. J. Wang, N. Naser, H. S. Kwon and M. Y. Cho, Anal. Chim. Acta, 264, 7-12 (1992) https://doi.org/10.1016/0003-2670(92)85290-M
  8. J. Wang and M. S. Lin, Anal. Chem, 60, 1545-1548 (1988) https://doi.org/10.1021/ac00166a014
  9. M. C. Messia, D. Compagnone, M. Esti and G. Palleschi, Anal. Chem., 68, 360-365 (1996) https://doi.org/10.1021/ac9508006
  10. N. Conrath, B. Grundig, S. Huwel and K. Cammann, Anal. Chim. Acta, 309, 47-52 (1995) https://doi.org/10.1016/0003-2670(95)00065-8
  11. M. D. Luque de Castro and J. M. Fernandez-Romero, Anal. Chim. Acta, 311, 281-287 (1995) https://doi.org/10.1016/0003-2670(95)00024-T
  12. J. I. Lee and I. Karube, Anal. Chim. Acta, 313, 69-74 (1995) https://doi.org/10.1016/0003-2670(95)00232-O
  13. J. Wang, J. Am. Chem. Soc., 120, 1048-1050 (1998) https://doi.org/10.1021/ja972759p
  14. J. R. Kirchner, 'Encyclopedia of Chemical Technology', Vol. 13, 12, Wiley-Interscience, New York, U. S. A., 1981
  15. N. Irving Sax, 'Hawley's Condensed Chemical Dictionary', 618, Van Nostrand Reinhold, New York, U. S. A., 1987
  16. C. E. Huckaba and F. G. Keyes, J. Am. Chem. Soc., 70, 1640-1644 (1948) https://doi.org/10.1021/ja01184a098
  17. E. C. Hudris and H. Jr. Romeyn, Anal. Chem., 26, 320-325 (1954) https://doi.org/10.1021/ac60086a016
  18. P. A. Clapp, D. F. Evans and T. S. S. Sheriff, Anal. Chim. Acta, 218, 331-334 (1989) https://doi.org/10.1016/S0003-2670(00)80309-8
  19. T. Nakano and A. Takahashi, Anal. Sci., 6, 823-826 (1990) https://doi.org/10.2116/analsci.6.823
  20. Y. Fang, R. Cai and J. Deng, Electroanalysis, 4, 819-822 (1992) https://doi.org/10.1002/elan.1140040813
  21. H. S. Kwon, K. K. Kim and C. G. Lee, J. Kor. Chem. Soc., 40, 4, 278-282 (1996)
  22. A. Mansouri, D. P. Makris and P. Keflas, J. Pharm. Biomed. Anal., 39, 22-26 (2005) https://doi.org/10.1016/j.jpba.2005.02.042
  23. F. R. P. Rocha, E. R. Torralba, B. F. Reis, A. M. Rubio and M. Guardia, Talanta, 67, 673-677 (2005) https://doi.org/10.1016/j.talanta.2005.03.021
  24. K. F. Fernandes, C. S. Lima, F. M. Lopes and C. H. Collins, Process Biochem., 40, 3441-3445 (2005) https://doi.org/10.1016/j.procbio.2005.04.003
  25. J. Wang, H. Ye, Z. Jiang, N. Chen and J. Huang, Anal. Chim. Acta, 508, 171-176 (2004) https://doi.org/10.1016/j.aca.2003.12.003
  26. A. Economou, P. D. Tzanavaras, M. Notou and D. G. Themelis, Anal. Chim. Acta, 505, 129-133 (2004) https://doi.org/10.1016/S0003-2670(03)00176-4
  27. C. Lau, J. Lu and M. Kai, Anal. Chim. Acta, 503, 235-239 (2004) https://doi.org/10.1016/j.aca.2003.10.035
  28. B. Tang and Y. Wang, Spectrochim. Acta, Part A, 59, 2867-2874 (2003) https://doi.org/10.1016/S1386-1425(03)00107-0
  29. C. Q. Zhu, S. J. Zhuo, J. L. Chen, Y. Q. Wu, Y. X. Li, D. H. Li, H. Zheng and J. G. Xu, Anal. Chim. Acta, 514, 247-252 (2004) https://doi.org/10.1016/j.aca.2004.03.064
  30. M. Wu, Z. Lin, M. Schaferling, A. Durkop, and O. S. Wolfbeis, Anal. Biochem., 340, 66-73 (2005) https://doi.org/10.1016/j.ab.2005.01.050
  31. S. Svensson, A. C. Olin, M. Larstad, G. Ljungkvist and K. Toren, J. Chromatogr., B, 809, 199-203, (2004) https://doi.org/10.1016/S1570-0232(04)00513-6
  32. W. J. Beurden, M. J. Bosch, W. C. Janssen, F. W. Smeenk, P. N. Dekhuijzen and G. A. Harff, Clin. Lab., 49, 637 (2003)
  33. X. Wang, H. Zhang, E. Wang, Z. Han and C. Hu, Mater. Lett., 58, 1661-1664 (2004) https://doi.org/10.1016/j.matlet.2003.10.044
  34. Y. Li, W. Bu, L. Wu and C. Sun, Sens. Actuators B, 107, 921-928 (2005) https://doi.org/10.1016/j.snb.2004.12.040
  35. Y. Yang and S. Mu, Biosensors and Bioelectronics, 21, 74-78 (2005) https://doi.org/10.1016/j.bios.2005.04.014
  36. K. I. Ozoemena, Z. Zhao and Nyokong, Electrochem. Comm., 7, 679-684, (2005) https://doi.org/10.1016/j.elecom.2005.04.019
  37. K. J. Yoon, S. Y. Pyun and H. S. Kwon, J. Kor. Chem. Soc., 41, 7, 343-356 (1997)
  38. K. J. Yoon, K. J. Kim and H. S. Kwon, J. Kor. Chem. Soc., 43, 3, 271-279 (1999)
  39. K. J. Yoon, B. G. Lee and H. S. Kwon, Anal. Sci. Tech., 13, 1, 41-48 (2000)
  40. B. G. Lee, K. J. Yoon and H. S. Kwon, Anal. Sci. Tech., 13, 3, 315-322 (2000)
  41. K. J. Yoon, Anal. Sci. Tech., 16, 6, 504-508 (2003)
  42. K. J. Yoon, J. Kor. Chem. Soc., 48, 6, 654-658 (2004) https://doi.org/10.5012/jkcs.2004.48.6.654
  43. Bull. Korean Chem. Soc., 25, 7, 997-1002 (2004) https://doi.org/10.5012/bkcs.2004.25.7.997
  44. K. J. Yoon, H. S. Kwon and B. G. Lee, J. Kor. Chem. Soc., 49, 3, 325-328 (2005) https://doi.org/10.5012/jkcs.2005.49.3.325
  45. L. Coche-Guerente, Anal. Chim. Acta, 311, 23-30 (1995) https://doi.org/10.1016/0003-2670(95)00178-3
  46. J. Wang, Z. Zhang and M. Prakash, Anal. Chim. Acta, 395, 11-16 (1999) https://doi.org/10.1016/S0003-2670(99)00306-2
  47. J. Wang, J. W. Mo, S. Li and J. Porter, Anal. Chim. Acta, 411, 183-189 (2001)
  48. J. Wang, S. Li, J. W. Mo, J. Porter, M. M. Musameh and P. K. Dasgupta, Biosensors & Bioelectronics, 17, 999-1003 (2002) https://doi.org/10.1016/S0956-5663(02)00092-1
  49. M. Dixon, C. W. Edwin, 'Enzymes', 633, Academic Press Inc., New york, U. S. A., 1979
  50. M. Mascini, M. Iannello and G. Palleschi, Anal. Chim. Acta, 138, 65-69, (1982) https://doi.org/10.1016/S0003-2670(01)85287-9