DOI QR코드

DOI QR Code

Fabrication of High-purity Rb Vapor Cell for Electric Field Sensing

  • Jae-Keun Yoo (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Deok-Young Lee (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Sin Hyuk Yim (Agency for Defense Development) ;
  • Hyun-Gue Hong (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Sun Do Lim (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Seung Kwan Kim (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Young-Pyo Hong (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • No-Weon Kang (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • In-Ho Bae (Division of Physical Metrology, Korea Research Institute of Standards and Science)
  • Received : 2022.11.16
  • Accepted : 2023.01.26
  • Published : 2023.04.25

Abstract

In this paper, we introduce our system for manufacturing a Rb vapor cell and describe its fabrication process in a sequence of removing impurities, cold trapping, and sealing off. Saturated absorption spectroscopy was performed to verify the quality of our cell by comparing it to that of a commercial one. By using the lab-fabricated Rb vapor cell, we observed electromagnetically induced transparency in a ladder-type system corresponding to the 5S1/2-5P3/2-28D5/2 transition of the 85Rb atom. A highly excited Rydberg atomic system was prepared using two counter-propagating external cavity diode lasers with wavelengths of 780 nm and 480 nm. We also observed the Autler-Townes splitting signal while a radio-frequency source around 100 GHz incidents into the Rydberg atomic medium.

Keywords

Acknowledgement

Institute of Information & communications Technology Planning & Evaluation (IITP) funded by the Korea government (MIST) (No. 2021-0-00890); Development of ultrasensitive electric field detection technology based on nonmetals.

References

  1. C. L. Degen, F. Reinhard, and P. Cappellaro, "Quantum sensing," Rev. Mod. Phys. 89, 035002 (2017).
  2. S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, "27Al+ Quantum-logic clock with a systematic uncertainty below 10-18," Phys. Rev. Lett. 123, 033201 (2019).
  3. C. A. Weidner and D. Z. Anderson, "Experimental demonstration of shaken-lattice interferometry," Phys. Rev. Lett. 120, 263201 (2018). https://doi.org/10.1103/PhysRevLett.120.263201
  4. I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, "Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability," Phys. Rev. Lett. 116, 183003 (2016). https://doi.org/10.1103/physrevlett.116.183003
  5. R. Geiger, A. Landragin, S. Merlet, and F. Pereira Dos Santos, "High-accuracy inertial measurements with cold-atom sensors," AVS Quantum Sci. 2, 024702 (2020). https://doi.org/10.1116/5.0009093
  6. L. Rondin, Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky and V. Jacques, "Magnetometry with nitrogen-vacancy defects in diamond," Rep. Prog. Phys. 77, 056503 (2014). https://doi.org/10.1088/0034-4885/77/5/056503
  7. T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, "Subpicotesla diamond magnetometry," Phys. Rev. X 5, 041001 (2015).
  8. M. Chipaux, M. L. Toraille, C. Larat, L. Morvan, S. Pezzagna, J. Meijer, and T. Debuisschert, "Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond," Appl. Phys. Lett. 107, 233502 (2015).
  9. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park and M. D. Lukin, "Nanometre-scale thermometry in a living cell," Nature 500, 54-58 (2013). https://doi.org/10.1038/nature12373
  10. T. Nagata, R. Okamoto, J. L. O'Brien, K. Sasaki, S. Takeuchi, "Beating the standard quantum limit with four-entangled photons," Science 316, 726-729 (2007). https://doi.org/10.1126/science.1138007
  11. J. Aasi et al. "Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light," Nat. Photonics 7, 613-619 (2013). https://doi.org/10.1038/nphoton.2013.177
  12. L. A. Lugiato, A. Gatti, and E. Brambilla, "Quantum imaging," J. Opt. B: Quantum Semiclass. Opt. 4, S176 (2002).
  13. A. Salmanogli and D. Gokcen, "Entanglement sustainability improvement using optoelectronic converter in quantum radar (interferometric object-sensing)," IEEE Sensors J. 21, 9054- 9062 (2021). https://doi.org/10.1109/JSEN.2021.3052256
  14. K. J. Boller, A. Imamolu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991). https://doi.org/10.1103/PhysRevLett.66.2593
  15. S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29 (1992).
  16. H. S. Moon, S. E. Park, Y.-H. Park, L. Lee, and J. B. Kim, "Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers," J. Opt. Soc. Am. B 23, 2393-2397 (2006). https://doi.org/10.1364/JOSAB.23.002393
  17. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett. 86, 783-786 (2001). https://doi.org/10.1103/PhysRevLett.86.783
  18. I.-H. Bae and H. S. Moon, "Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell," Phys. Rev. A 83, 053806 (2011).
  19. D. Budker and M. Romalis, "Optical magnetometry," Nat. Phys. 3, 227-234 (2007). https://doi.org/10.1038/nphys566
  20. S. H. Yim, D.-Y. Lee, S. Lee, and M. M. Kim, "Experimental setup to fabricate Rb-Xe gas cells for atom spin gyroscopes," AIP Advances 12, 015025 (2022).
  21. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, "Spectroscopy of Rb atoms in hollow-core fibers," Phys. Rev. A 81, 053825 (2010).
  22. J. Kitching, "Chip-scale atomic devices," Appl. Phys. Rev. 5, 031302 (2018).
  23. L. A. Downes, A. R. MacKellar, D. J. Whiting, C. Bourgenot, C. S. Adams, and K. J. Weatherill, "Full-field terahertz imaging at kilohertz frame rates using atomic vapor," Phys. Rev. X 10, 011027 (2020).
  24. A. Artusio-Glimpse, M. T. Simons, N. Prajapati, and C. L. Holloway, "Modern RF measurements with hot Atoms: A technology review of Rydberg atom-based radio frequency field sensors," IEEE Microw. Mag. 23, 44-56 (2022).
  25. J. A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, and J. P. Shaffer, "Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances," Nat. Phys. 8, 819-824 (2012). https://doi.org/10.1038/nphys2423
  26. J. A. Sedlacek, A. Schwettmann, H. Kubler, and J. P. Shaffer, "Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell," Phys. Rev. Lett. 111, 063001 (2013)
  27. C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, "Broadband Rydberg atom-based electric-field probe for SItraceable, self-calibrated measurements," IEEE Trans. Antennas Propag. 62, 6169-6182 (2014). https://doi.org/10.1109/TAP.2014.2360208
  28. M. T. Simons, J. A. Gordon, and C. L. Holloway, "Fibercoupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor," Appl. Opt. 57, 6456-6460 (2018). https://doi.org/10.1364/AO.57.006456
  29. H. Fan, S. Kumar, J. Sheng, J. P. Shaffer, C. L. Holloway, and J. A. Gordon, "Effect of vapor-cell geometry on Rydberg-atombased measurements of radio-frequency electric fields," Phys. Rev. Appl. 4, 044015 (2015).
  30. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, "Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor," Phys. Rev. A 82, 045806 (2010).
  31. A. N. Nesmeyanov, Vapour Pressure of the Chemical Elements (Elsevier, Nederland, 1963).
  32. A. Gallagher and E. L. Lewis, "Determination of the vapor pressure of rubidium by optical absorption," J. Opt. Soc. Am. 63, 864-869 (1973). https://doi.org/10.1364/JOSA.63.000864