• Title/Summary/Keyword: Electromagnetically induced transparency

Search Result 19, Processing Time 0.064 seconds

Polarization-Dependent Electromagnetically-Induced Transparency by Using Metamaterial (편광 상태와 메타 물질을 이용한 전자기파 유도 에너지 전달 제어)

  • Park, Jin-Woo;Kim, Sung-Il;Jang, Won-Ho;Lee, Young-Pak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.406-409
    • /
    • 2012
  • The classical electromagnetically-induced transparency(EIT)-like switching in metamaterial was experimentally and theoretically demonstrated in the microwave-frequency region. The metamaterial unit cell consists of two identical split-ring resonators, which are arranged on both sides of a dielectric substrate with asymmetry. It is found that the classical EIT-like switching can be achieved by changing the polarization of the incident electromagnetic wave. The results of this study are promising for practical applications.

Controllable electromagnetically-induced transparency-like response in a bilayer metamaterial

  • Hwang, J.S.;Yoo, Y.J.;Kim, Y.J.;Kim, K.W.;Rhee, J.Y.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.234.2-234.2
    • /
    • 2015
  • Recently, the electromagnetically-induced transparency (EIT)-like effect in metamaterials has attracted enormous interest. Metamaterial analogs of EIT enable promising applications in slow-light devices, low-loss metamaterial, quantum optics, and novel sensors. In this work, we experimentally and numerically studied a bilayer metamaterial for controllable EIT-like spectral response at microwave frequencies. Bilayer metamaterial consists of two snake-shape resonators (SSRs) with one and two bars. The transmission spectra were measured in a frequency range of 4 - 8 GHz in an anechoic chamber at normal incidence. It is found that two SSRs in the metamaterial are activated in bright modes, and the coupling between two bright modes leads to the EIT-like effect, which results in the enhanced transmission at 5.61 GHz. Furthermore, we confirm that the EIT-like feature could be controlled by adjusting the geometric parameters of metamaterial structure. Our work provides a way to tunable EIT-like effect and various potential applications including filters, sensors, and other microwave devices.

  • PDF

Observation of the Electromagnetically Induced Transparency and Dispersion-like Structure in Trapped Cs Atoms

  • Kim, Kyoung-Dae;Kwon, Mi-Rang;Kim, Jung-Bog;Moon, Han-Seb
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.131-135
    • /
    • 2001
  • We report experiemtnal results demonstrating the electromagnetically induced transparency (EIT) in trapped Cs atoms. EIT occurs at the Λ-type configuration where the re0-pumping laser simultaneously plays a role as the coupling laser in the presence of a magneto-optical trapping and weak magnetic fields. Dependences of EIT signal on both the intensity and the detuning of the coupling laser were investigated. Linear absorption spectra for cold cesium atoms in the magneto-optical trap have been observed and shown the pronounced dispersion-like structure with sub-natural linewidth of 1 MHz due to the cooling laser.

Electromagnetically Induced Transparency with Hyperfine Structure (사다리형 전자기 유도 투과에서의 초미세 구조)

  • Moon, Han-Sub;Lee, Rim;Lee, Won-Kyu;Seo, Ho-Sung;Kim, Joong-Bok
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.206-207
    • /
    • 2003
  • 전자기 유도 투과(electromagnetically induced transparency ; EIT)는 원자의 공명 진동수를 갖는 조사광이 원자 매질을 통과할 때, 강한 결합광에 의한 효과로 매질에 흡수되지 않고 투과하는 양자 간섭 효과로써 원자결맞음 현상의 가장 대표적인 현상 중의 하나이다. EIT 현상은 Boller 등에 의해서 고출력 펄스 레이저를 이용하여 Strontium 증기에서 처음 관측된 이후, 여러 가지 원자와 분자의 증기 셀, 원자 빔, 고체, 냉각된 원자, 그리고 BEC(Bose Einstein condensate)상태에서 다양한 연구들이 이루어지고 있다. (중략)

  • PDF