DOI QR코드

DOI QR Code

Through-field Investigation of Stray Light for the Fore-optics of an Airborne Hyperspectral Imager

  • Cha, Jae Deok (Department of Optical Engineering, Kongju National University) ;
  • Lee, Jun Ho (Department of Optical Engineering, Kongju National University) ;
  • Kim, Seo Hyun (Core H/W Team, Hanwha Systems Co.) ;
  • Jung, Do Hwan (Core H/W Team, Hanwha Systems Co.) ;
  • Kim, Young Soo (Space Surveillance System TF Team, Hanwha Systems Co.) ;
  • Jeong, Yumee (Defense Space Technology Center, Agency for Defense Development)
  • Received : 2022.01.17
  • Accepted : 2022.04.15
  • Published : 2022.06.25

Abstract

Remote-sensing optical payloads, especially hyperspectral imagers, have particular issues with stray light because they often encounter high-contrast target/background conditions, such as sun glint. While developing an optical payload, we usually apply several stray-light analysis methods, including forward and backward analyses, separately or in combination, to support lens design and optomechanical design. In addition, we often characterize the stray-light response over a full field to support calibration, or when developing an algorithm to correct stray-light errors. For this purpose, we usually use forward analysis across the entire field, but this requires a tremendous amount of computational time. In this paper, we propose a sequence of forward-backward-forward analyses to more effectively investigate the through-field response of stray light, utilizing the combined advantages of the individual methods. The application is an airborne hyperspectral imager for creating hyperspectral maps from 900 to 1700 nm in a 5-nm-continuous band. With the proposed method, we have investigated the through-field response of stray light to an effective accuracy of 0.1°, while reducing computation time to 1/17th of that for a conventional, forward-only stray-light analysis.

Keywords

Acknowledgement

This work was supported by a grant-in-aid of HANWHA SYSTEMS.

References

  1. E. Fest, Stray Light Analysis and Control (SPIE Press, Bellingham, WA, USA, 2013).
  2. M. Totzeck, W. Ulrich, A. Gohnermeier, and W. Kaiser, "Pushing deep ultraviolet lithography to its limits," Nature Photonics 1, 629-631 (2007). https://doi.org/10.1038/nphoton.2007.218
  3. J.-O. Park, W.-K. Jang, S.-H. Kim, H.-S. Jang, and S.-H. Lee, "Stray light analysis of high resolution camera for a low-earth-orbit satellite," J. Opt. Soc. Korea 15, 52-55 (2011). https://doi.org/10.3807/JOSK.2011.15.1.052
  4. S. Grabarnik, G. B. Courreges-Lacoste, C. Pachot, L. Gambicorti, R. Riviere, and S. Riedl, "In-field and out-of-field stray light analysis for the COPERNICUS Sentinel 4 instrument," Proc. SPIE 11180, 111802Q (2019).
  5. M. Asadnezhad, A. Eslamimajd, and H. Hajghassem,"Optical system design of star sensor and stray light analysis," J. Eur. Opt. Soc. Rapid Publ. 14, 9 (2018). https://doi.org/10.1186/s41476-018-0078-8
  6. B. T. Overstreet and C. J. Legleiter, "Removing sun glint from optical remote sensing images of shallow river," Earth Surf. Process. Landforms 42, 318-333 (2017). https://doi.org/10.1002/esp.4063
  7. J. A. Lee and J. H. Lee, "Stray light analysis of a compact imaging spectrometer for a microsatellite STSAT-3," J. Opt. Soc. Korea. 23, 167-171 (2012).
  8. W. J. Moses, J. H. Bowles, R. L. Lucke, and M. R. Corson, "Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters," Opt. Express 20, 4309-4330 (2012). https://doi.org/10.1364/OE.20.004309
  9. B. Rasti, P. Scheunders, P. Ghamisi, G. Licciardi, and J. Chanussot, "Noise reduction in hyperspectral imagery: overview and application," Remote Sens. 10, 482 (2018). https://doi.org/10.3390/rs10030482
  10. R. H. A. El-Maksoud and J. M. Sasian, "Paraxial ghost image analysis," Proc. SPIE 7428, 742807 (2009).
  11. M. G. Dittman, E. Donley, and F. Grochocki, "Deterministic sequential stray light analysis," Proc. SPIE 7794, 77940T (2010).
  12. S. V. Shestov, A. N. Zhukov, and D. B. Seaton, "Modeling and removal of optical ghosts in the PROBA-3/ASPIICS externally occulted solar coronagraph," Astron. Astrophys. 622, A101 (2019). https://doi.org/10.1051/0004-6361/201834584
  13. ZEMAX. Optical Design Program. User's Guide. ZEMAX Development Corporation.
  14. X.-L. Xia, Y. Shuai, and H.-P. Tang, "Calculation techniques with the Monte Carlo method in stray radiation evaluation," J. Quant. Spectrosc. Radiat. Transf. 95, 101-111 (2005). https://doi.org/10.1016/j.jqsrt.2004.09.041
  15. M. W. Zollers, J. M. Tamkin, and G. G. Gregory, "Efficient design process for the evaluation and control of flare in optomechanical systems," Proc. SPIE 7428, 742806 (2009).
  16. D. Liu, L. Wang, W. Yang, S. Wu, B. Fan, and F. Wu, "Stray light characteristics of the diffractive telescope system," Opt. Eng. 57, 025105 (2018).
  17. X. Hong, Z. Su, G. Zhang, Z. Chen, Y. Meng, D. Li, and Y. Liu, "Analysis and reduction of solar stray light in the nighttime imaging camera of Luojia-1 satellite," Sensors 19, 1130 (2019). https://doi.org/10.3390/s19051130
  18. Synopsys, "Optical design solutions," (Synosys Co., Published: 2020), https://www.synopsys.com/optical-solutions.html (Accesed : Nov. 15, 2021).
  19. X. Chen, C. Sun, and X. Xia, "Backward Monte Carlo analysis on stray radiation of an infrared optical system," Proc. SPIE 8907, 89071E (2013).
  20. L. Yang, A. X. Qiang, and W. Qian, "Accurate and fast stray radiation calculation based on improved backward ray tracing," Appl. Opt. 52, B1-B9 (2013). https://doi.org/10.1364/ao.52.0000b1
  21. J. Hong, J.-H. Shin, H. S. Koh, and S.-W. Kim, "Backward ray tracing for the stray light analysis of the modulated optical system," Proc. SPIE 10636, 1063607 (2018).
  22. J. Hong, J.-H. Shin, H. S. Koh, and S.-W. Kim, "Ghost radiance suppression using backward ray path analysis for a Risley prism scanner of an active laser ranging system," Opt. Express 28, 3410-3427 (2020). https://doi.org/10.1364/oe.381081
  23. E. Oh, J. Hong, S.-W. Kim, Y.-J. Park, and S.-I. Cho, "Novel ray tracing method for stray light suppression from ocean remote sensing measurements," Opt. Express 24, 10232-10245 (2016). https://doi.org/10.1364/OE.24.010232
  24. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," Opt. Express 10, 210-221 (2002). https://doi.org/10.1364/OE.10.000210
  25. Y. Zong, S. W. Brown, G. Meister, R. A. Barnes, and K. R. Lykke, "Characterization and correction of stray light in optical instruments," Proc. SPIE 6744, 67441L (2007).
  26. M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, "Stray light correction algorithm for multichannel hyperspectral spectrographs," Appl. Opt. 51, 3631-3641 (2012). https://doi.org/10.1364/AO.51.003631
  27. M. P. Finn, M. Lewis, D. D. Bosch, M. Giraldo, K. Yamamoto, D. G. Sullivan, R. Kincaid, R. Luna, G. K. Allam, C. Kvien, and M. S. Williams, "remote sensing of soil moisture using airborne hyperspectral data," GISci. Remote Sens. 48, 522-540 (2011). https://doi.org/10.2747/1548-1603.48.4.522
  28. S. H. Kim, H. J. Kong, J. U. Lee, J. H. Lee, and J. H. Lee, "Design and construction of an Offner spectrometer based on geometrical analysis of ring fields," Rev. Sci. Instrum. 85, 083108 (2014). https://doi.org/10.1063/1.4892479
  29. J. Hong, Y. Kim, B. Choi, S. Hwang, D. Jeong, J. H. Lee, Y. Kim, and H. Kim, "Efficient method to measure the spectral distortions using periodically distributed slit in hyperspectral imager," Opt. Express 25, 20340-20351 (2017). https://doi.org/10.1364/OE.25.020340
  30. PerkinElmer, "LAMBDA 800 UV/VIS and 900 UV/VIS/NIR Spectrophotometer Systems," (PerkinElmer Co., Published: 2021), http://www.surplusserver.com/PDF/Lambda800_900_Brochure.pdf (Accessed: Nov. 15, 2021).
  31. J. L. Marshall, P. Williams, J.-P. Rheault, T. Prochaska, R. D. Allen, and D. L. DePoy, "Characterization of the reflectivity of various black materials," Proc. SPIE 9147, 91474F (2014).
  32. L. Clermont, C. Michel, P. Blain, J. Loicq, and Y. Stockman, "Stray light entrance pupil: an efficient tool for stray light characterization," Opt. Eng. 59, 025102 (2020).