• 제목/요약/키워드: current loop

검색결과 1,136건 처리시간 0.025초

Modeling and a Simple Multiple Model Adaptive Control of PMSM Drive System

  • Kang, Taesu;Kim, Min-Seok;Lee, Sa Young;Kim, Young Chol
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.442-452
    • /
    • 2017
  • This paper deals with the input-output modeling of a vector controlled PMSM drive system and design of a simple multiple model adaptive control (MMAC) scheme with desired transient responses. We present a discrete-time modeling technique using closed-loop identification that can experimentally identify the equivalent models in the d-q coordinates. A bank of linear models for the equivalent plant of the current loop is first obtained by identifying them at several operating points of the current to account for nonlinearity. Based on these models, we suggest a simple q-axis MMAC combined with a fixed d-axis controller. After the current controller is designed, another equivalent model including the current controller in the speed control loop shall be similarly obtained, and then a fixed speed controller is synthesized. The proposed approach is demonstrated by experiments. The experimental set up consists of a surface mounted PMSM (5 KW, 220V, 8 poles) equipped with a flywheel load of 220kg and a digital controller using DSP (TMS320F28335).

Optimization of Energy Conversion Loop in Switched Reluctance Motor for Efficiency Improvement

  • Li, Jian;Qu, Ronghai;Chen, Zhichu;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.565-571
    • /
    • 2013
  • This paper presents an effective method to improve efficiency of switched reluctance motor by optimizing energy conversion loop. A nonlinear analytical model which takes saturation account is developed to calculate inductance and flux-linkage. The flux-linkage curve is studied to calculate the co-energy increment to obtain the optimum exciting current. For a given cross-section, the exciting current at which co-energy increment is maximum was found to be constant while stack length varies. Then the energy conversion loop was optimized by varying the stack length and turns of windings. The constraints during optimization were that motor was excited by the maximum increment co-energy current and the energy in the loop was determined by rated power of motor. Dynamic finite element analysis was used to evaluate the efficiency of various models and the comparison of results shows promising effects of the proposed method. Experiment was also conducted to validate the simulation result.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

오존발생장치용 정출력 전원장치의 개발 (Development of Constant Output Power Supply System for Ozonizer)

  • 우정인;우성훈;노인배;박지호;김동완
    • 조명전기설비학회논문지
    • /
    • 제19권7호
    • /
    • pp.113-121
    • /
    • 2005
  • 본 논문에서는 오존발생장치의 전원측 파형에 포함되는 고주파수의 노이즈를 제거하고, 디지털 궤환 제어에 의해 오존 출력을 제어하기 위하여 전원장치의 출력측 LC 필터와 방전관 용량으로부터 커패시터 전압과 전류를 검출하여 2중의 제어루프를 설계하였다. 디지털 제어기의 연산지연시간을 보상하기 위하여 연산지연시간을 전원장치 플랜트의 고유한 파라미터로 가정하고, 플랜트 모델에 포함시켜 모델링 하였다. 오존발생장치의 부하변동에 따르는 과도상태 응답특성을 개선하고, 파라미터 변동에 강인한 특성을 얻기 위하여 내부 전류 모델 제어기를 제안하였다. 또한 오존발생장치용 전원장치에서 영 오차의 정상 상태를 얻기 위하여 외부 전압 제어루프를 구성하여 비례 제어기와 공진 제어기를 병렬로 연결한 비례-공진 전압제어기를 제안하였다.

UPS 인버터의 디지털 제어기 및 모니터링 시스템의 개발 (Development of Digital Controller and Monitoring System for UPS Inverter)

  • 박지호;황기현;김동완
    • 전자공학회논문지SC
    • /
    • 제44권1호
    • /
    • pp.1-11
    • /
    • 2007
  • 본 논문에서는 UPS 인버터의 성능 개선을 위하여 출력측 LC 필터의 커패시터 전압과 전류의 2중 제어루프를 구성하고, 2중 제어루프에 디지털 제어시스템을 설계하였다. 또한, 디지털 제어기의 연산지연시간을 보상하기 위하여 이러한 연산지연시간을 인버터 플랜트의 고유한 파라미터로 가정하고, 플랜트 모델에 포함시켜 모델링 하였다. UPS 인버터 출력전압의 과도상태 응답특성을 개선하고, 파라미터 변동에 강인한 특성을 얻기 위하여 2중 제어루프에서 내부 전류 제어루프는 내부 모델 제어기를 제안하였다. UPS 인버터 출력전압의 0의 정상상태 오차를 얻기 위하여 외부 전압 제어루프는 비례 제어기와 공진 제어기를 병렬로 연결한 비례-공진 전압제어기를 제안하였다. 또한, 사용자에게 쉽게 UPS의 동작 상태를 표시하기 위하여 그래픽 사용자 인터페이스를 이용한 UPS의 모니터링 시스템을 구현하였다.

Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review

  • Park, Eunkyoung;Lee, Jae-Woong;Kang, Minhee;Cho, Kyeongwon;Cho, Baek Hwan;Lee, Kyu-Sung
    • International Neurourology Journal
    • /
    • 제22권4호
    • /
    • pp.228-236
    • /
    • 2018
  • Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses an open-loop system that only delivers continuous stimulation without considering the patient's state changes. Though the conventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction.

비트 동기 Charge-pump 위상 동기 회로의 해석 (Analysis for bit synchronization using charge-pump phase-locked loop)

  • 정희영;이범철
    • 전자공학회논문지S
    • /
    • 제35S권1호
    • /
    • pp.14-22
    • /
    • 1998
  • The Mathematic model of bit synchronization charge-pump Phase Locked Loop (PLL) is presented which takes into account the aperiodic reference pulses and the leakage current of the loop filter. We derive theoreitcal static phase error, overload and stability of bit synchronization charge-pump PLL using presented model and compare it with one of the conventional charge-pump PLL model. We can analysis bit synchronization charge-pump PLL exactly because our model takes into account the leakage current of the loop filter and aperiodic input data which are the charateristics of bit synchronization charge-pump PLL. We also verify it using HSPICE simulation with a bity synchronizer circuit.

  • PDF

전류모드 제어의 소신호 모델링 (Small Signal Modeling of Current Mode Control)

  • 정영석;강정일;최현칠;윤명중
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.338-345
    • /
    • 1998
  • The mathematical interpretation of a practical sampler which is useful to obtain the small signal models for the peak and average current mode controls is proposed. Due to the difficulties in applying the Shannons sampling theorem to the analysis of sampling effects embedded in the current mode control, several different approaches have been reported. However, these approaches require the information of the inductor current in a discrete expression, which restricts the application of the reported method only to the peak current mode control. In this paper, the mathematical expressions of sampling effects on a current loop which can directly apply the Shannons sampling theorem are newly proposed, and applied to the modeling of the peak current mode control. By the newly derived models of a practial smapler, the models in a discrete time domain and a continuous time domain are obtained. It is expected that the derived models are useful for the control loop design of power supplies. The effectiveness of the derived models are verified through the simulation and experimental results.

  • PDF

Performance Improvement of Voltage-mode Controlled Interleaved Buck Converters

  • Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.104-108
    • /
    • 2005
  • This paper presents the performance improvement of voltage-mode controlled interleaved synchronous buck converters. This is a voltage-mode controlled scheme, where the controllers do not need an external saw-tooth generator for PWM generation and the loop design is easier. The controller implementation requires only a single error amplifier and gives almost current mode control performance. The control scheme uses voltage feedback with two loops similar to current mode control: one for the slow outer loop and the other for the faster inner PWM control loop. To improve the performance of the converter system a coupled inductor is used. This coupled inductor reduces the magnetic size and also improves the converter's transient performance without increasing the steady-state current ripple. The effectiveness of the proposed control scheme is demonstrated through PSIM simulations.