DOI QR코드

DOI QR Code

Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review

  • Park, Eunkyoung (Smart Healthcare & Device Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Jae-Woong (Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University) ;
  • Kang, Minhee (Smart Healthcare & Device Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cho, Kyeongwon (Smart Healthcare & Device Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cho, Baek Hwan (Smart Healthcare & Device Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Kyu-Sung (Smart Healthcare & Device Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2018.11.06
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses an open-loop system that only delivers continuous stimulation without considering the patient's state changes. Though the conventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI), National Research Foundation of Korea (NRF)

References

  1. Chu CM, Harvie HS, Smith AL, Arya LA, Andy UU. The impact of treatment of overactive bladder on physical activity limitations. J Womens Health (Larchmt) 2016;25:801-5. https://doi.org/10.1089/jwh.2015.5643
  2. Hsieh PF, Chiu HC, Chen KC, Chang CH, Chou EC. Botulinum toxin A for the treatment of overactive bladder. Toxins (Basel) 2016 Feb 29;8(3). pii: E59. https://doi.org/10.3390/toxins8030059.
  3. Jang HJ, Kwon MJ, Cho KO. Central regulation of micturition and its association with epilepsy. Int Neurourol J 2018;22:2-8. https://doi.org/10.5213/inj.1836040.020
  4. Wolz-Beck M, Reisenauer C, Kolenic GE, Hahn S, Brucker SY, Huebner M. Physiotherapy and behavior therapy for the treatment of overactive bladder syndrome: a prospective cohort study. Arch Gynecol Obstet 2017;295:1211-7. https://doi.org/10.1007/s00404-017-4357-1
  5. Andersson KE, Birder L. Current pharmacologic approaches in painful bladder research: an update. Int Neurourol J 2017;21:235-42. https://doi.org/10.5213/inj.1735022.511
  6. Ladi-Seyedian SS, Nabavizadeh B, Sharifi-Rad L, Kajbafzadeh AM. Pharmacological treatments available for the management of underactive bladder in neurological conditions. Expert Rev Clin Pharmacol 2018;11:193-204. https://doi.org/10.1080/17512433.2018.1411801
  7. Abello A, Das AK. Electrical neuromodulation in the management of lower urinary tract dysfunction: evidence, experience and future prospects. Ther Adv Urol 2018;10:165-73. https://doi.org/10.1177/1756287218756082
  8. Chai TC, Kudze T. New therapeutic directions to treat underactive bladder. Investig Clin Urol 2017;58(Suppl 2):S99-106. https://doi.org/10.4111/icu.2017.58.S2.S99
  9. Lay AH, Das AK. The role of neuromodulation in patients with neurogenic overactive bladder. Curr Urol Rep 2012;13:343-7. https://doi.org/10.1007/s11934-012-0272-y
  10. Sanford MT, Suskind AM. Neuromodulation in neurogenic bladder. Transl Androl Urol 2016;5:117-26. https://doi.org/10.21037/tau.2016.s117
  11. Tanagho EA, Schmidt RA, Orvis BR. Neural stimulation for control of voiding dysfunction: a preliminary report in 22 patients with serious neuropathic voiding disorders. J Urol 1989;142(2 Pt 1):340-5. https://doi.org/10.1016/S0022-5347(17)38751-7
  12. Medtronic, Inc.; premarket approval of the Interstim Sacral Nerve Stimulation (SNS) System--FDA. Notice. Fed Regist 1998;63:4457.
  13. Chancellor MB, Chartier-Kastler EJ. Principles of sacral nerve stimulation (SNS) for the treatment of bladder and urethral sphincter dysfunctions. Neuromodulation 2000;3:16-26. https://doi.org/10.1046/j.1525-1403.2000.00015.x
  14. McGuire E, Morrissey S, Zhang S, Horwinski E. Control of reflex detrusor activity in normal and spinal injured non-human primates. J Urol 1983;129:197-9. https://doi.org/10.1016/S0022-5347(17)51982-5
  15. Govier FE, Litwiller S, Nitti V, Kreder KJ Jr, Rosenblatt P. Percutaneous afferent neuromodulation for the refractory overactive bladder: results of a multicenter study. J Urol 2001;165:1193-8. https://doi.org/10.1016/S0022-5347(05)66469-5
  16. Karam R, Bhunia S, Majerus S, Brose SW, Damaser MS, Bourbeau D. Real-time, autonomous bladder event classification and closedloop control from single-channel pressure data. Conf Proc IEEE Eng Med Biol Soc 2016;2016:5789-92.
  17. Lee JW, Kim D, Yoo S, Lee H, Lee GH, Nam Y. Emerging neural stimulation technologies for bladder dysfunctions. Int Neurourol J 2015;19:3-11. https://doi.org/10.5213/inj.2015.19.1.3
  18. Wenzel BJ, Boggs JW, Gustafson KJ, Grill WM. Closed loop electrical control of urinary continence. J Urol 2006;175:1559-63. https://doi.org/10.1016/S0022-5347(05)00657-9
  19. Sagawa K. Closed-loop physiological control of the heart. Ann Biomed Eng 1980;8:415-29. https://doi.org/10.1007/BF02363443
  20. Paul V, Garratt C, Ward DE, Camm AJ. Closed loop control of rate adaptive pacing: clinical assessment of a system analyzing the ventricular depolarization gradient. Pacing Clin Electrophysiol 1989;12:1896-902. https://doi.org/10.1111/j.1540-8159.1989.tb01882.x
  21. Lillehei CW, Gott VL, Hodges PC Jr, Long DM, Bakken EE. Transitor pacemaker for treatment of complete atrioventricular dissociation. J Am Med Assoc 1960;172:2006-10. https://doi.org/10.1001/jama.1960.03020180016003
  22. Sutton R, Fisher JD, Linde C, Benditt DG. History of electrical therapy for the heart. Eur Heart J Suppl 2007;9:I3-10.
  23. Rickards AF, Norman J. Relation between QT interval and heart rate. New design of physiologically adaptive cardiac pacemaker. Br Heart J 1981;45:56-61. https://doi.org/10.1136/hrt.45.1.56
  24. Miller JD, Yousuf O, Berger RD. The implantable cardioverter-defibrillator: an update. Trends Cardiovasc Med 2015;25:606-11. https://doi.org/10.1016/j.tcm.2015.01.015
  25. Shirvalkar P, Veuthey TL, Dawes HE, Chang EF. Closed-loop deep brain stimulation for refractory chronic pain. Front Comput Neurosci 2018;12:18. https://doi.org/10.3389/fncom.2018.00018
  26. Bina RW, Langevin JP. Closed loop deep brain stimulation for PTSD, addiction, and disorders of affective facial interpretation: review and discussion of potential biomarkers and stimulation paradigms. Front Neurosci 2018;12:300. https://doi.org/10.3389/fnins.2018.00300
  27. Hoang KB, Cassar IR, Grill WM, Turner DA. Biomarkers and stimulation algorithms for adaptive brain stimulation. Front Neurosci 2017;11:564. https://doi.org/10.3389/fnins.2017.00564
  28. Meidahl AC, Tinkhauser G, Herz DM, Cagnan H, Debarros J, Brown P. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord 2017;32:810-9. https://doi.org/10.1002/mds.27022
  29. Johnson LA, Nebeck SD, Muralidharan A, Johnson MD, Baker KB, Vitek JL. Closed-Loop deep brain stimulation effects on Parkinsonian motor symptoms in a non-human primate - Is beta enough? Brain Stimul 2016;9:892-6. https://doi.org/10.1016/j.brs.2016.06.051
  30. Powell CR. Conditional electrical stimulation in animal and human models for neurogenic bladder: working toward a neuroprosthesis. Curr Bladder Dysfunct Rep 2016;11:379-85. https://doi.org/10.1007/s11884-016-0388-x
  31. van Balken MR, Vergunst H, Bemelmans BL. The use of electrical devices for the treatment of bladder dysfunction: a review of methods. J Urol 2004;172:846-51. https://doi.org/10.1097/01.ju.0000134418.21959.98
  32. Gaziev G, Topazio L, Iacovelli V, Asimakopoulos A, Di Santo A, De Nunzio C, et al. Percutaneous tibial nerve stimulation (PTNS) efficacy in the treatment of lower urinary tract dysfunctions: a systematic review. BMC Urol 2013;13:61. https://doi.org/10.1186/1471-2490-13-61
  33. Gobbi C, Digesu GA, Khullar V, El Neil S, Caccia G, Zecca C. Percutaneous posterior tibial nerve stimulation as an effective treatment of refractory lower urinary tract symptoms in patients with multiple sclerosis: preliminary data from a multicentre, prospective, open label trial. Mult Scler 2011;17:1514-9. https://doi.org/10.1177/1352458511414040
  34. de Wall LL, Heesakkers JP. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome. Res Rep Urol 2017;9:145-57.
  35. Scaldazza CV, Morosetti C, Giampieretti R, Lorenzetti R, Baroni M. Percutaneous tibial nerve stimulation versus electrical stimulation with pelvic floor muscle training for overactive bladder syndrome in women: results of a randomized controlled study. Int Braz J Urol 2017;43:121-6. https://doi.org/10.1590/s1677-5538.ibju.2015.0719
  36. de Seze M, Raibaut P, Gallien P, Even-Schneider A, Denys P, Bonniaud V, et al. Transcutaneous posterior tibial nerve stimulation for treatment of the overactive bladder syndrome in multiple sclerosis: results of a multicenter prospective study. Neurourol Urodyn 2011;30:306-11. https://doi.org/10.1002/nau.20958
  37. Burton C, Sajja A, Latthe PM. Effectiveness of percutaneous posterior tibial nerve stimulation for overactive bladder: a systematic review and meta-analysis. Neurourol Urodyn 2012;31:1206-16. https://doi.org/10.1002/nau.22251
  38. Peters KM, Carrico DJ, Perez-Marrero RA, Khan AU, Wooldridge LS, Davis GL, et al. Randomized trial of percutaneous tibial nerve stimulation versus Sham efficacy in the treatment of overactive bladder syndrome: results from the SUmiT trial. J Urol 2010;183:1438-43. https://doi.org/10.1016/j.juro.2009.12.036
  39. Wenzel BJ, Boggs JW, Gustafson KJ, Creasey GH, Grill WM. Detection of neurogenic detrusor contractions from the activity of the external anal sphincter in cat and human. Neurourol Urodyn 2006;25:140-7. https://doi.org/10.1002/nau.20204
  40. Horvath EE, Yoo PB, Amundsen CL, Webster GD, Grill WM. Conditional and continuous electrical stimulation increase cystometric capacity in persons with spinal cord injury. Neurourol Urodyn 2010;29:401-7.
  41. Mendez A, Sawan M, Minagawa T, Wyndaele JJ. Estimation of bladder volume from afferent neural activity. IEEE Trans Neural Syst Rehabil Eng 2013;21:704-15. https://doi.org/10.1109/TNSRE.2013.2266899
  42. Wenzel BJ, Boggs JW, Gustafson KJ, Grill WM. Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve. IEEE Trans Neural Syst Rehabil Eng 2005;13:428-35. https://doi.org/10.1109/TNSRE.2005.848355
  43. Macnab AJ. The evolution of near infrared spectroscopy in urology. Biomed Spectrosc Imaging 2014;3:311-44. https://doi.org/10.3233/BSI-140091
  44. Macnab A, Shadgan B, Stothers L. Validation of transcutaneous NIRS monitoring of bladder hemodynamics and oxygenation using a rabbit model. Biomed Spectrosc Imaging 2013;2:91-9. https://doi.org/10.3233/BSI-130038
  45. Macnab A, Friedman B, Shadgan B, Stothers L. Bladder anatomy physiology and pathophysiology: elements that suit near infrared spectroscopic evaluation of voiding dysfunction. Biomed Spectrosc Imaging 2012;1:223-35. https://doi.org/10.3233/BSI-2012-0020
  46. Macnab AJ, Stothers L, Shadgan B. Wireless near-infrared spectroscopy (NIRS) of the bladder detrusor during uroflow in ambulant children and adults. J Urology 2009;181(4 Suppl):600-1.
  47. Macnab AJ, Shadgan B, Stothers L, Afshar K. Ambulant monitoring of bladder oxygenation and hemodynamics using wireless near-infrared spectroscopy. Can Urol Assoc J 2013;7:E98-104.
  48. Macnab A, Shadgan B, Afshar K, Stothers L. Near-infrared spectroscopy of the bladder: new parameters for evaluating voiding dysfunction. Int J Spectrosc 2011;2011:Article ID 814179.
  49. Fong D, Alcantar AV, Gupta P, Kurzrock E, Ghiasi S. Non-invasive bladder volume sensing for neurogenic bladder dysfunction management. In: 2018 IEEE 15th International Conference Wearable and Implantable Body Sensor Networks (BSN): 2018 Mar 4-7; Las Vegas, USA. Piscataway (NJ): Institute of Electrical and Electronics Engineers; 2018. p. 82-5.
  50. Molavi B, Shadgan B, Macnab AJ, Dumont GA. Noninvasive optical monitoring of bladder filling to capacity using a wireless near infrared spectroscopy device. IEEE Trans Biomed Circuits Syst 2014;8:325-33. https://doi.org/10.1109/TBCAS.2013.2272013
  51. Clausen I, Tvedt LG, Glott T. Measurement of urinary bladder pressure: a comparison of methods. Sensors (Basel) 2018 Jul 3;18(7). pii: E2128. https://doi.org/10.3390/s18072128.
  52. Dakurah MN, Koo C, Choi W, Joung YH. Implantable bladder sensors: a methodological review. Int Neurourol J 2015;19:133-41. https://doi.org/10.5213/inj.2015.19.3.133
  53. Opisso E, Borau A, Rijkhoff NJ. Urethral sphincter EMG-controlled dorsal penile/clitoral nerve stimulation to treat neurogenic detrusor overactivity. J Neural Eng 2011;8:036001. https://doi.org/10.1088/1741-2560/8/3/036001
  54. Bruns TM, Gaunt RA, Weber DJ. Multielectrode array recordings of bladder and perineal primary afferent activity from the sacral dorsal root ganglia. J Neural Eng 2011;8:056010. https://doi.org/10.1088/1741-2560/8/5/056010
  55. Majerus SJ, Fletter PC, Ferry EK, Zhu H, Gustafson KJ, Damaser MS. Suburothelial bladder contraction detection with implanted pressure sensor. PLoS One 2017;12:e0168375. https://doi.org/10.1371/journal.pone.0168375
  56. Rutter EM, Langdale CL, Hokanson JA, Hamilton F, Tran H, Grill WM, et al. Detection of bladder contractions from the activity of the external urethral sphincter in rats using sparse regression. IEEE Trans Neural Syst Rehabil Eng 2018;26:1636-44. https://doi.org/10.1109/TNSRE.2018.2854675
  57. Ross SE, Ouyang Z, Rajagopalan S, Bruns TM. Evaluation of decoding algorithms for estimating bladder pressure from dorsal root ganglia neural recordings. Ann Biomed Eng 2018;46:233-46. https://doi.org/10.1007/s10439-017-1966-6
  58. Brindley GS, Donaldson PE. Electrolytic current-control elements for surgically implanted electrical devices. Med Biol Eng Comput 1986;24:439-41. https://doi.org/10.1007/BF02442701
  59. Kim A, Powell CR, Ziaie B. An Universal packaging technique for low-drift implantable pressure sensors. Biomed Microdevices 2016;18:32. https://doi.org/10.1007/s10544-016-0058-y
  60. Young DJ, Cong P, Suster MA, Damaser M. Implantable wireless battery recharging system for bladder pressure chronic monitoring. Lab Chip 2015;15:4338-47. https://doi.org/10.1039/C5LC00821B
  61. Khurram A, Ross SE, Sperry ZJ, Ouyang A, Stephan C, Jiman AA, et al. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface. J Neural Eng 2017;14:036027. https://doi.org/10.1088/1741-2552/aa6801
  62. Kim MK, Kim H, Jung YS, Adem KMA, Bawazir SS, Stefanini C, et al. Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite. Conf Proc IEEE Eng Med Biol Soc 2017;2017:1732-5.

Cited by

  1. Sakrale Neuromodulation bei unter- und überaktivem Detrusor - quo vadis? : Prinzipien und Entwicklungen vol.58, pp.6, 2018, https://doi.org/10.1007/s00120-019-0949-7
  2. Multitask neural networks for predicting bladder pressure with time series data vol.72, pp.no.pa, 2022, https://doi.org/10.1016/j.bspc.2021.103298