• Title/Summary/Keyword: Biomarkers

Search Result 1,324, Processing Time 0.034 seconds

Biomarkers of Exposure for Cigarette Smoke (담배연기 노출량 평가 생체지표)

  • Park, Chul-Hoon;Shin, Han-Jae;Lee, Hyeong-Seok;Yoo, Ji-Hye;Sohn, Hyung-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2009
  • Biomarkers could be critical and useful tools for assessing the biological effects of smoking and detecting differences between potentially reduced exposure product (PREP) and conventional cigarettes. Smoking-related biomarkers can be classified into three categories as biomarkers of exposure, biomarkers of effects, and biomarkers of potential harm. When compared with the biomarkers of effects or harm, the biomarkers of exposure for chemical constituents of cigarette smoke are well established and characterized. In addition, they could offer the important information in understanding how cigarette smoke interacts with biological molecules and causes the disease to human. Therefore, we provide an overview of 6 biomarkers of exposure (Nicotine and nicotine metabolites, Carboxyhaemoglobin, NNAL (4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol) and NNAL - glucuronide, 3-Hydroxypropyl-mercapturic acid, and Monohydroxy-butenyl-mercapturic acids, and Urine mutagenicity) which were validated through extensive research and clinical experience. These reliable biomarkers could help identify the efficacy of PREP by predicting early toxicological effects and lead to improve it.

State of the Science: Salivary Biomarker Utilization for Stress Research

  • An, Kyungeh;Starkweather, Angela;Sturgill, Jamie;Kao, Hsueh-Fen S.;Salyer, Jeanne
    • Perspectives in Nursing Science
    • /
    • v.11 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • Purpose: The use of salivary biomarkers for stress research is increasing based on the convenience of collection, affordability and scientific merit. This short review provides an overview of the state of the science of salivary biomarkers utilized in research related to stress. Methods: An integrative review was conducted. Results: The trend of utilizing salivary biomarkers in stress research was reviewed, specifically, focusing on the use of endocrine and inflammatory biomarkers incorporated in previous stress research. Then, a review of sampling procedures for salivary biomarkers and the analytic methods is provided. Finally, a discussion on the strengths and areas for improvement in the use of salivary biomarkers in stress research is included. Conclusion: Salivary biomarkers as an alternative to blood biomarkers are increasingly being recognized as a legitimate source for analyzing the stress response in humans.

A Panel of Serum Biomarkers for Diagnosis of Prostate Cancer (전립선암 진단을 위한 바이오마커 패널)

  • Cho, Jung Ki;Kim, Younghee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.271-276
    • /
    • 2017
  • Cancer biomarkers are using in the diagnosis, staging, prognosis and prediction of disease progression. But, there are not sufficiently profiled and validated in early detection and risk classification of prostate cancer. In this study, we have devoted to finding a panel of serum biomarkers that are able to detect the diagnosis of prostate cancer. The serum samples were consisted of 111 prostate cancer and 343 control samples and examined. Eleven biomarkers were constructed in this study, and then nine biomarkers were relevant to candidate biomarkers by using t test. Finally, four biomarkers, PSA, ApoA2, CYFRA21.1 and TTR, were selected as the prostate cancer biomarker panel, logistic regression was used to identify algorithms for diagnostic biomarker combinations(AUC = 0.9697). A panel of combination biomarkers is less invasive and could supplement clinical diagnostic accuracy.

Identification and Application of Biomarkers in Molecular and Genomic Epidemiologic Research

  • Lee, Kyoung-Mu;Han, So-Hee;Park, Woong-Yang;Kang, Dae-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.349-355
    • /
    • 2009
  • Biomarkers are characteristic biological properties that can be detected and measured in a variety of biological matrices in the human body, including the blood and tissue, to give an indication of whether there is a threat of disease, if a disease already exists, or how such a disease may develop in an individual case. Along the continuum from exposure to clinical disease and progression, exposure, internal dose, biologically effective dose, early biological effect, altered structure and/or function, clinical disease, and disease progression can potentially be observed and quantified using biomarkers. While the traditional discovery of biomarkers has been a slow process, the advent of molecular and genomic medicine has resulted in explosive growth in the discovery of new biomarkers. In this review, issues in evaluating biomarkers will be discussed and the biomarkers of environmental exposure, early biologic effect, and susceptibility identified and validated in epidemiological studies will be summarized. The spectrum of genomic approaches currently used to identify and apply biomarkers and strategies to validate genomic biomarkers will also be discussed.

Biomarkers for Evaluation of Prostate Cancer Prognosis

  • Esfahani, Maryam;Ataei, Negar;Panjehpour, Mojtaba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2601-2611
    • /
    • 2015
  • Prostate cancer, with a lifetime prevalence of one in six men, is the second cause of malignancy-related death and the most prevalent cancer in men in many countries. Nowadays, prostate cancer diagnosis is often based on the use of biomarkers, especially prostate-specific antigen (PSA) which can result in enhanced detection at earlier stage and decreasing in the number of metastatic patients. However, because of the low specificity of PSA, unnecessary biopsies and mistaken diagnoses frequently occur. Prostate cancer has various features so prognosis following diagnosis is greatly variable. There is a requirement for new prognostic biomarkers, particularly to differentiate between inactive and aggressive forms of disease, to improve clinical management of prostate cancer. Research continues into finding additional markers that may allow this goal to be attained. We here selected a group of candidate biomarkers including PSA, PSA velocity, percentage free PSA, $TGF{\beta}1$, AMACR, chromogranin A, IL-6, IGFBPs, PSCA, biomarkers related to cell cycle regulation, apoptosis, PTEN, androgen receptor, cellular adhesion and angiogenesis, and also prognostic biomarkers with Genomic tests for discussion. This provides an outline of biomarkers that are presently of prognostic interest in prostate cancer investigation.

Biomarker-directed Targeted Therapy in Colorectal Cancer

  • John M. Carethers
    • Journal of Digestive Cancer Research
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 2015
  • With advances in the understanding of the biology and genetics of colorectal cancer (CRC), diagnostic biomarkers that may predict the existence or future presence of cancer or a hereditary condition, and prognostic and treatment biomarkers that may direct the approach to therapy have been developed. Biomarkers can be ascertained and assayed from any tissue that may demonstrate the diagnostic or prognostic value, including from blood cells, epithelial cells via buccal swab, fresh or archival cancer tissue, as well as from cells shed into fecal material. For CRC, current examples of biomarkers for screening and surveillance include germline testing for suspected hereditary CRC syndromes, and stool DNA tests for screening average at-risk patients. Molecular biomarkers for CRC that may alter patient care and treatment include the presence or absence of microsatellite instability, the presence or absence of mutant KRAS, BRAF or PIK3CA, and the level of expression of 15-PGDH in the colorectal mucosa. Molecularly targeted therapies and some general therapeutic approaches rely on biomarker information. Additional novel biomarkers are on the horizon that will undoubtedly further the approach to precision or individualized medicine.

  • PDF

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Radiograph-based Diagnostic Methods for Thoracic and Lumbar Spine Malposition in Chuna Manual Therapy Using Biomarkers (단순 방사선 영상기반 바이오마커를 활용한 흉·요추의 추나의학적 변위 진단 방법)

  • Jin-Hyun Lee;Minho Choi;Joong Il Kim;Jun-Su Jang;Tae-Yong Park
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • Objectives This study aimed to propose biomarkers for diagnosing Chuna manual therapy (CMT) based on X-ray images in the thoracic and lumbar spines. Methods Through a literature review and expert consensus process, diagnostic biomarkers for CMT were selected based on the listing system in thoracic and lumbar radiograph anterior-posterior (AP) and lateral views. Results 1. Diagnostic biomarkers were derived from four points on the outer contour of the vertebral body in the thoracic and lumbar spine radiograph lateral view, enabling the diagnosis of flexion and extension malposition. 2. Additional diagnostic biomarkers were identified in the thoracic and lumbar radiographAP view, utilizing points on the outer contour of the vertebral body. These biomarkers facilitate the diagnosis of lateral bending. Moreover, biomarkers derived from the innermost point of the pedicle contour allow for the diagnosis of rotation malposition. 3. Furthermore, through the biomarkers proposed in this study, all malpositions of the thoracolumbar spines and complex Type I and II malpositions can be diagnosed in CMT. Conclusions The biomarkers reported in this study consist of minimal points to determine the position of the vertebral body, providing the advantage of simplicity while minimizing potential errors during the CMT diagnostic process. Further clinical research and the development of related programs should be pursued to expand the evidence for CMT.

Biomarkers for the lung cancer diagnosis and their advances in proteomics

  • Sung, Hye-Jin;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.615-625
    • /
    • 2008
  • Over a last decade, intense interest has been focused on biomarker discovery and their clinical uses. This interest is accelerated by the completion of human genome project and the progress of techniques in proteomics. Especially, cancer biomarker discovery is eminent in this field due to its anticipated critical role in early diagnosis, therapy guidance, and prognosis monitoring of cancers. Among cancers, lung cancer, one of the top three major cancers, is the one showing the highest mortality because of failure in early diagnosis. Numerous potential DNA biomarkers such as hypermethylations of the promoters and mutations in K-ras, p53, and protein biomarkers; carcinoembryonic antigen (CEA), CYFRA21-1, plasma kallikrein B1 (KLKB1), Neuron-specific enolase, etc. have been discovered as lung cancer biomarkers. Despite extensive studies thus far, few are turned out to be useful in clinic. Even those used in clinic do not show enough sensitivity, specificity and reproducibility for general use. This review describes what the cancer biomarkers are for, various types of lung cancer biomarkers discovered at present and predicted future advance in lung cancer biomarker discovery with proteomics technology.

BIOLOGICALLY BASED DOSE-RESPONSE (BBDR) MODELING USING BIOMARKERS FOR CANCEER RISK ASSESSMENT

  • Song, Hyun-Sue;Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.137-137
    • /
    • 2002
  • Biologically Based Dose-Response (BBDR) models were developed using biomarkers for cancer risk assessment. To establish the relationship among biomarkers, exposure dose and tumor response, biomarkers in the lung, liver, stomach or blood were measured after a single or continuous administration of selected carcinogen (; BaP) in mice or rats.(omitted)

  • PDF