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Small Signal Modeling of Current Mode Control

Young-Seok Jung, Jeong-Il Kang, Hyun-Chil Choi and Myung-Joong Youn

ABSTRACT

The mathematical interpretation of a practical sampler which is useful to obtain the small signal models for the peak
and average current mode controls is proposed. Due to the difficulties in applying the Shannons sampling theorem to
the analysis of sampling effects embedded in the current mode control, several different approaches have been reported.
However, these approaches require the information of the inductor current in a discrete expression, which restricts the
application of the reported method only to the peak current mode control. In this paper, the mathematical expressions
of sampling effects on a current loop which can directly apply the Shannons sampling theorem are newly proposed, and
applied to the modeling of the peak current mode control. By the newly derived models of a practical sampler, the
models in a discrete time domain and a continuous time domain are obtained. It is expected that the derived models
are useful for the control loop design of power supplies. The effectiveness of the derived models are verified through the

simulation and experimental results.
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1. Introduction

The current mode control has been quite popular in
recent years, and has been the subject of extensive
researches. Although the current mode control has
several advantages such as built-in overload protection
and easy load-sharing of multiple converters,™ it also
possesses the problem of a current loop instability. To
characterize the current loop instability problem, several
models have been reported such as discrete time and
sampled data ones.”™ These models are useful for
predicting the behaviors of the current mode controlled
converter. It is, however, difficult to obtain the design
insights of this converter from the reported models.

To overcome these problems, the continuous time
models considering the sampling effects on a current
loop have been presented to modify the low frequency
models.* " By using these approaches, the continuous

time small signal models can be more accurate
compared to the conventional low frequency model. To
modify the high frequency behavior of the low frequency
models, the practical sampler was introduced in®. This
practical sampler was used to sample by using a series
of pulses, not impulses. This property of a practical
sampler makes it difficult to apply the Shannons
sampling theorem to obtain the continuous time model
for the current mode control. To solve this problem, the
previous works are mainly dependent on the discrete
expressions of a current loop. This dependence on the
discrete expressions makes it difficult to apply these
methods to the modeling of more complicated control
such as an average current mode control.

Therefore, the mathematical interpretation of a
practical sampler is proposed in this paper, which can
be easily obtained and does not depend on the discrete
expressions of a current loop. This makes it possible to
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Fig. 1 Linear circuit of a buck converter

apply the proposed modeling method to a more
complicated control. By the proposed modeling method,
it is easy to obtain the models for a peak current mode
control and an average current mode control. The model
of a practical sampler is treated as two ideal samplers
operated on the perturbed current and duty cycle
generator with different sampling instant. And two
different sampling instants are unified under the
equivalent condition of the perturbed current. By the
mathematical interpretation of a practical sampler, the
small signal model of a current mode control can be
easily obtained only with simple mathematical
manipulation. In this paper, the derivation of the
mathematical model of a practical sampler is focused on
a peak current mode control. To show the validity of the
proposed approach, the continuous time and discrete
time models of a peak current mode controlled buck
converter are derived and compared with the
experiment results.

2. Power Stage Model

The model of a current mode control can be considered
as the combination of a power stage model and a
modulator model. Because the continuous time small
signal model is especially very useful for the control loop
design of power supplies, the averaging method is
generally applied to the modeling of power converter. By
applying the averaging method to the power converter,
the conventional low frequency model can be obtained.®
The low frequency model of a buck converter used for
the power stage model of this paper is shown as

ic(t)

33 2 MREE=xoie) 7|2nty
Fig. 2 Basic waveforms of a current-mode control
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where ; and ¥ are a perturbed inductor current and a
perturbed capacitor voltage, respectively. The linear
equivalent circuit of a buck converter employing the
modulator model is shown in Fig. 1.

3. Modulator Model

3.1 Basic Structure of Practical Sampler
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Fig. 2 shows the waveforms of a peak current mode
control modulator. As shown in this figure, the inductor
current 1) consists of a steady-state current /,(#) and a
small perturbed current i(1). It is noticed that the
sampling effects is included in the waveform of a small
perturbed current. As noted in', the response of a
perturbed current i (£) can be considered as that of the
low-frequency model connected in series with a practical
sampler. The practical sampler is used to indicate that
the sampling is done by a series of pulses, not impulses.
This makes it difficult to use the Shannons sampling
theorem. However, this difficulty can be overcome by
developing the mathematical expression for a practical
sampler as presented in this paper.

To obtain the mathematical expressions of the
practical sampler in a peak current mode control, the
expanded view of the inductor current is considered as
shown in Fig. 3. As can be noticed in this figure, there
are two slopes in the perturbed inductor current. One is
kept zero over the interval between (n+a)T, Ts and
(n+1)T,, which shows the possibility of existence of an
ideal sampler with zero order holder in a current loop.
The other slope is a positive or negative one which
determines the magnitude variation of a perturbed
inductor current. The perturbed current caused by this
slope can be rebuilt with the combination of the low
frequency model of a power converter and the duty cycle
modulator which contains an ideal sampler and a
modulator gain. Therefore, the models of a practical
sampler can be expressed with two ideal samplers
operated at the instants of (n+a)T, Ts and (n+ DT,
respectively. Considering the difference between two
sampling instants, the model structure of a peak
current mode control can be drawn as shown in Fig.
4(a). The response of a perturbed inductor current of
this model structure is shown in Fig. 4(d). Fig. 4(a)
shows that with different sampling instants, one of two
samplers is used for the perturbed inductor current and
the other is for the duty cycle generator. As can be well
understood, since two samplers have the different
sampling instants, the development of models for a
peak current mode control is difficult. To unify the
sampling instants of two samplers, the model structure
is modified by adding another zero order holder as
illustrated in Fig. 4(b). This modification is come from
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Fig. 4 Model structure of a current-mode control

the equivalent condition of the perturbed current at the
sampling instant, nTs. At the time of sampling instant,
the perturbed inductor current response of the model
shown in Fig. 4(a) is the same as that of Fig. 4(b).
Since the modulator gain between two samplers is
constant, two samplers can be reduced to one without
affecting the results as shown in Fig. 4(c). Fig. 4(d)
shows the relationship between the perturbed current
and the sampling instant based on the derived models
of Fig. 4.



3.2 Derivation of Discrete Time Model

The response of a peak current mode controlled
converter is accurately predicted by the exact discrete-
time and sampled-data models. Although the design
insights can not be provided, the discrete time model is
useful for understanding the behaviors of the converter.
In this section, the derivation of a discrete time model of
a peak current mode controlled converter from the
proposed model structure is presented. The remaining
works in deriving the discrete time model are only the
mathematical manipulation of the proposed model
structure of a peak current mode controlled converter.
As an example, the buck converter is considered as a
power stage model. The averaged model of a buck
converter is expressed in (1). The gain of inductor
current to duty cycle can be expressed as

i(s) V. _M+M,

s

é(s) T Is s

F(s)= (2)

where M, and M, are the on-time and off-time slopes of
the inductor current, respectively. The expanded view of
a peak current mode modulator is shown in Fig. 5.
Assuming that the on-time slope, M,, is constant over a
switching period, the modulator gain of the circuit
becomes

~

g d 2 1
i—i (M +M)T,

¢

(3)

where Mc is the slope of an external ramp. With the
transfer function of a zero order holder as

1-e"

H;,,;,(S) = 1G]

the discrete-time domain expression of a combined gain
of Fi(s) and H_, (s) is derived as follows:

zoh
(M, +M)T,

z—-1

Gy =2Z(H ,,(s)F(s) = (5)

From (5), the discrete time model of a current loop
transfer function is obtained as follows:
i(z) a

T()=42 ©)
i(2) z—1+a
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Fig. 5 Modulator waveforms

where
oMM D
M +M,.

It can be seen that the derived discrete time model is
the same as the model presented in previous works
which explain the subharmonic oscillation phenomena
in the current responses.®”® As shown in (6), the
subharmonic oscillation condition of the inductor current
is determined by the value of a. In case of M, { M, and
of no applied external ramp, the value of a is greater
than two, which results in the instability of an inductor,
current. Therefore, the system instability at duty cycles
greater than 0.5 without the external ramp can be
explained using the derived discrete time model.

3.3 Derivation of Continuous Time Small Signal
Model

As noted previously, the continuous time small signal
model is especially useful for the control loop design of a
power converter. Thus, this model including the
sampling effects is derived from the proposed model
structure. The gain, 7(s), including the zero order
holder, modulation gain, and power stage model can be
expressed as follows:

sT,
Ty=F 12 % (8)
s Ls

The perturbed inductor current, i(s), can be
expressed from Fig. 4(c) as follows:
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i) =T(i"(9-1"(s) 9

where ~ denotes the sampled quantity. By considering
the sampling effects on the inductor current in (9), the
following equation can be obtained as

i) =T -i"() (10)

where T'(s) is expressed as

()= B, 0 == (an

Combining (9) and (10), the equation of an inductor
current can be expressed as

F(s) = T(s) —— i (s), (12)

I+T (s)

With the assumption of slow variation of the reference
signal i_, the following relation can be obtained as

1—e™

i (s). (13)

i(s)=

N

The current loop transfer function from a control
signal i to an inductor current ; can be derived from
(12) and (13) as follows:

;(5) _ s T(s)
i) 1= 14T (s)

(14)

Using the current loop gain including the sampling
effects T,(s), the current loop transfer function can be
rewritten as follows:

= (15)

From the (14) and (15), the current loop gain can be
derived as follows:

L T(s)
T(s)= —L1= : (16)
1+fuyT44—nﬂ
— €

~sT,

Therefore, the final form of an ideal sampler with a
zero order holder approximating the sampling effects in
a peak current-mode control can be expressed as
follows:

1
T,(s)= . (17)

1+ T (5) =~ T(s)
l—e™™

Substituting (11) into (17) gives

I, (s)= (18)

(6]

with Pade approximation.” The Pade approximation is

accurate up to half the switching frequency as follows:

bs 4
[——5+-—5"
- ) w
o = a, A (19)
T 4 ,
1+ =s+-—s

o,

It is seen that the sampling effect can be considered
as introducing an additional pole into the current loop
in the low frequency model. By the presence of an
additional pole, the crossover frequency of a current loop
is changed, and the stability of the current response is
affected. This result is coincided with that by Tan in.”®
And by rearranging the sampling gain 7,(s) for the
feedback signal of a perturbed inductor current as in,”
the sampling gain can be rewritten as

2

z@)zl—le+Z%s? (20)
2 Vs

This result is also coincided with that by Ridley in®.
Thus, the mathematical interpretation of a practical
sampler is useful for modeling of the current mode
control.

4. Simulation and Experimental Results

Fig. 6 shows the circuit diagram of a buck converter
employing the peak current-mode control. To show the
accuracy of the derived continuous time small signal
model, the transient responses of the inductor current
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Fig. 6 Circuit diagram of a current mode control
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Fig. 7 Inductor current responses with D=0.33

are examined under several different operating
conditions. Fig. 7 shows the inductor current responses
with an operating duty of D=0.33 for the step change
of a reference signal. The experimental results for an
inductor current and a gate signal are shown in Fig.
T(a). To verify the usefulness of the proposed model,
simulation results are obtained and compared for the
proposed model and the conventional low-frequency
model in Fig. 7(b). For the convenient comparison, the
results of a circuit level simulation using Psim is also
presented in this figure, which has the same waveshape
with the experimental results of Fig. 7(a). The low-
frequency model reveals the incorrectness compared to
the experimental result. The simulation and
experimental results of an inductor current response,
however, are well agreed with that of a derived
continuous time small signal model.
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Fig. 8 Inductor current responses with D=0.4
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Fig. 9 Inductor current responses with D=0.46

In Figs. 8 and 9, the inductor current responses are
shown with an operating duty of D=0.4 and D=0.46,
respectively. As can be noticed in these figures, the
response of the inductor current becomes oscillatory
when the operating duty is increased. This phenomenon
can be well predicted by the results of the root locus in
Fig. 10, which is obtained from the derived continuous
time small signal model. It can be also predicted in this
figure that the system becomes unstable with duty
cycles greater than 0.5 without the external ramp
compensation, which is well illustrated in Fig. 11.

These results show that the derived model is useful
for predicting the behaviors of the perturbed inductor
current of power supplies employing the peak current
mode control, and the model of a practical sampler ina
peak current mode control is valid.
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Fig. 10. Root loci of current loop transfer function
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Fig. 11. Inductor current responses with D=0.6

5. Conclusion

In this paper. the mathematical interpretation of a
practical sampler in a current control loop is proposed
which is useful to obtain the small signal model for a
current mode control. The practical sampler is treated
as two ideal samplers which are operated on the
perturbed current and the duty cycle generator with
different sampling instant. Under the equivalent
condition of the perturbed current at the sampling
instant. two different sampling instants are unified.
This makes it easier to obtain the discrete time and
corresponding continuous time small signal models of
the current mode control. Simulations and experiments
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are carried out for the peak current mode controlled
buck converter to verify the usefulness of the derived
model. Under the variations of the operating duty, the
time response of an inductor current of the derived
model is compared with that of the conventional low
frequency model. From the derived small signal model,
the root locus is obtained, which predicts the transient
response of the converter system. Therefore, the
usefulness of the practical sampler model and the
derived model is verified.
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