• 제목/요약/키워드: current limiting characteristics

검색결과 324건 처리시간 0.026초

Performance inspection of smart superconducting fault current controller in radial distribution substation through PSCAD/EMTDC simulation

  • MassoudiFarid, Mehrdad;Shim, Jae Woong;Lee, Jiho;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.21-25
    • /
    • 2013
  • In power grid, in order to level out the generation with demand, up-gradation of the system is occasionally required. This will lead to more fault current levels. However, upgrading all the protection instruments of the system is both costly and extravagant. This issue could be dominated by using Smart Fault Current Controller (SFCC). While the impact of Fault current Limiters (FCL) in various locations has been studied in different situations for years, the performance of SFCC has not been investigated extensively. In this research, SFCC which has adopted the characteristics of a full bridge thyristor rectifier with a superconducting coil is applied to three main locations such as load feeder, Bus-tie position and main feeder location and its behavior is investigated through simulation in presence and absence of small Distributed Generation unit (DG). The results show a huge difference in limiting the fault current when using SFCC.

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권2호
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.

YBCO coated conductors(CCs)의 안정화재 두께 변화에 따른 quench/recovery 특성 분석에 관한 연구 (Quench/recovery test results of the YBCO coated conductors(CCs) having various stabilizer thicknesses)

  • 권나영;김현성;김광록;김경준;임성우;김혜림;현옥배;이해근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.10-14
    • /
    • 2009
  • Since a stabilizer of YBCO coated conductor (CC) plays a very important role of bypassing over-current and transferring heat generated in the moment of fault, it is one of big issues to determine the material of the stabilizer and its dimension for the high performance of the HTS power application system. Especially, in the case of a superconducting fault current limiter (SFCL), which requires it to react immediately to the occurrence of fault, characteristics of stabilizer are decisive in limiting fault current and recovering superconducting properties during and after quenching. In this paper, the quench / recovery characteristics of YBCO CCs with various thickness of stabilizer were analyzed. The quench/recovery test carried out at 20 $V_{rms}$, 5 cycles (60 Hz) and results showed that as the thickness of the stabilizer decreased, both the final approach temperature and the recovery time decreased.

반복과전류에 의한 퓨즈 엘리먼트의 용단특성에 관한 연구 (A Study on the melting Characteristics of Fuse Element by Repeating Overcurrent)

  • 김윤현
    • 조명전기설비학회논문지
    • /
    • 제24권2호
    • /
    • pp.120-126
    • /
    • 2010
  • 본 논문은 고압용 전류제한 퓨즈의 열화 요인으로 작용되는 반복과전류에 의한 퓨즈 엘리먼트의 용단특성을 시험을 통하여 분석 및 규명하였다. 반복과전류에 의한 열화 진행 속도를 규명하기 위하여 엘리먼트노칭 형상별 열 해석을 수행하였으며 판형, 환형의 다양한 시험용 엘리먼트의 형상을 설계, 제작하여 이를 기중상태 및 규사충전상태의 소호제 유무에서 부하율을 조정하여 반복과전류 시험을 통한 용단특성을 분석, 수명과의 관계를 예측할 수 있는 자료를 제시하였다. 본 논문의 시험을 통하여 반복과전류에 의한 소호제와의 마찰로 퓨즈 엘리먼트의 변형 및 단면의 감소와 반복응력으로 인한 균열이 발생하여 퓨즈 반복 횟수에 따른 수명을 단축시키는 문제점의 도출과 엘리먼트 노칭 형상에 따라서 용단 특성이 차이가 있음을 알 수 있었다. 본 논문의 결과물은 재료의 마찰과 반복 전류의 부하율에 따른 반복 수명과의 상관관계에 관한 내용으로 고압용 전류제한 퓨즈의 성능 향상 개선을 위한 설계 시 중요한 기초 자료로 활용되리라 기대된다.

전자장 해석을 통한 매트릭스형 한류기용 리액터 설계 및 특성해석 (Design and Characterization of a Reactor for Matrix Type SFCLs Using Electromagnetic Field Analysis)

  • 정동철;윤창훈;최효상
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.227-230
    • /
    • 2009
  • In this paper, we performed the optimum design of reactors for matrix-type superconducting-fault current limiters (SFCLs), using electromagnetic analysis tools. We decided a optimun position within a reactor for superconducting elements of current-limiting parts and trigger parts from the calculation of magnetic flux internsity for reactor structures. Also we decided effective distance length between two reactors through the analysis of the distribution of magnetic field, according to distance lengths between them. We designed and characterized matrix-type SFCLs, based on our optimum design of a reactor. We confirmed uniform distribution of a fault current, resulted from the improvement of simultaneous quench characteristics within our matrix-type SFCL.

초전도 퓨즈의 전압별 특성 (Characteristics of a superconductive fuse according to applied voltages)

  • 최효상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.169-172
    • /
    • 2004
  • We present the basic properties of a superconducting current limiting fuse (SCLF) based on YBCO/Au films. The SCLFs consists of YBCO stripes covered with Au layers for current shunt. Under the source voltage of 100 $V_{rms}$, the longer the duration time of fault current was, the shorter its discharge time was. The duration time of fault current and its discharge time were reduced by increased voltages in the range of 200 - 300 $V_{rms}$. We thought that this was because the quench propagation was limited by local melting generated with higher voltage.

  • PDF

초전도 코일 적용으로 인한 DC 차단기의 차단 용량 증대 (Extension of Cut-off Capacity of DC Circuit Breaker due to Superconducting Coil Application)

  • 최혜원;최효상
    • 전기학회논문지
    • /
    • 제68권4호
    • /
    • pp.593-597
    • /
    • 2019
  • We proposed a current Interruption type DC superconducting circuit breaker(I-DC SCB), a protection device that combines the current limiting technology of a superconductor with the cut-off technology of circuit breaker. Unlike existing protective devices, the current I-DC SCB is a device that combines two protection functions, notably improving failure probability and operational reliability. It is also applicable to all DC systems, such as HV, MV, and LVDC, due to the ease in capacity increase. The 100 kV I-DC SCB was designed after taking into account the actual power system conditions, followed by an analysis of the transient characteristics and the breaking range of the limiter. The results of the analysis showed that the I-DC SCB had a fault current limit of about 75% at the rated voltage, and completed the cut-off operation within about 20 ms.

2차권선의 병렬연결에 따른 하이브리드형 초전도 한류기의 특성 (Characteristics of Hybrid-Type SFCL according to the Parallel Connection of Secondary Windings)

  • 황종선;조용선;최효상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.208-211
    • /
    • 2006
  • We have analyzed operating characteristics of hybrid-type superconducting fault current limiter (SFCL) according to the parallel connection of secondary windings with $YBa_{2}Cu_{3}O_{7}$ (YBCO) films. The turn ratio between the primary and secondary windings of each reactor was 63:21. Hybrid-type SFCL using a transformer with parallel reactors could reduce the unbalanced quench caused by differences of the critical current density between YBCO films. We found that hybrid-type SFCL having parallel connection induced simultaneous quench between the superconducting elements. The quench-starting point at this time was almost same. When the applied voltage was 200V, the limiting current in the hybrid-type SFCL with a serial connection was lowered to 34 percent than that in the SFCL with a parallel connection. In the meantime, when the voltage generated in the superconducting elements was the same, the current value in the parallel connection was 60 percent less than in the serial connection. The voltage generated in the primary winding also showed the similar behavior. In conclusion, we found that the fault current was limited more effectively in the SFCL with the serial connection but the power burden of the superconducting elements was reduced in the parallel connection.

  • PDF

Operational Characteristics of Flux-lock Type SFCL using Series Resonance

  • Lim, Sung-Hun;Han, Byoung-Sung;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2005
  • We analyzed the fault current limiting characteristics of a flux-lock type $high-T_c$ super­conducting fault current limiter (HTSC-FCL) using series resonance between capacitor for series resonance and magnetic field coil which was installed in coil 3. The capacitor for the series resonance in the flux-lock type HTSC-FCL was inserted in series with the magnetic field coil to apply enough magnetic field into HTSC element, which resulted in higher resistance of HTSC element. However, the impedance of the flux lock type HTSC-FCL has started to decrease since the current of coil 3 exceeded one of coil 2 after a fault accident. The decrease in the impedance of the FCL causes the line current to increase and, if continues, the capacitor for the series resonance to be destructed. To avoid this operation, the flux-lock type HTSC-FCL requires an additional device such as fault current interrupter or control circuit for magnetic field. From the experimental results, we investigated the parameter range where the operation as mentioned above for the designed flux-lock type HTSC-FCL using series resonance occurred.

중성점을 이용한 변압기형 초전도 한류기의 전류제한 특성 분석 (Current Limiting Characteristics of transformer type SFCL using neutral line)

  • 조용선;최효상;박형민;이주형;정병익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.2090-2091
    • /
    • 2007
  • We investigated the characteristics of transformer type SFCL with neutral line. The transformer type SFCL having neutral line has achieved the simultaneous quench because the secondary winding has acted as parallel reactor. The fault current of SFCL was limited according to ratio of turn number between primary and secondary windings. Therefore, the power burden of superconducting element can be reduced by reduction of ratio of turn number between primary and secondary windings. As a result, we could expect reduction of it's volume in the transformer type SFCL.

  • PDF