• Title/Summary/Keyword: current injection

Search Result 1,048, Processing Time 0.034 seconds

Simulated Fault Injection Using Simulator Modification Technique

  • Na, Jong-Whoa;Lee, Dong-Woo
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2011
  • In the current very deep submicron technology era, fault tolerant mechanisms perform an essential function to cope with the effects of soft errors. To evaluate the effectiveness of the fault tolerant mechanism, reliability engineers use simulated fault injections using either saboteur modules or mutants in the simulation model. However, the two methods suffer from both inefficiency in the simulation mechanism and difficulties with the experimental setups. To overcome these inefficiencies, we propose the Verilog-based simulated fault injection (VFI) technique. VFI has the following advantages. First, modification of the design model is unnecessary. Second, the fault injection simulation procedure is simple and efficient. Third, various types of fault injection experiments can be performed. To evaluate the effectiveness of the proposed methodology, we developed a VFI environment using the ICARUS Verilog Simulator. From the experimental results, we were able to qualitatively evaluate the reliability of the target simulation models and to assess the effectiveness of the employed fault-tolerance mechanisms.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

Development of Thermoplastic-Thermoset Multi Component Injection Mold for a Waterproof Connector (방수커넥터용 열가소성-열경화성 이종소재 사출금형 개발)

  • Jung, T. S.;Choi, K. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.418-425
    • /
    • 2015
  • Based on eco-friendly advantages and the enhanced development in the chemical and physical characteristics, liquid silicone rubber (LSR) is widely used in producing precision parts in the automotive, medical, electronics, aeronautical and many other industries. In the current work, a thermoplastic-thermoset multi component injection molding (MCM) was developed for a waterproof automotive connector housing using PBT and LSR resins. Measurements of the rheological characteristics of PBT and LSR were made to improve the reliability of the numerical analysis for the multi component injection process. With the measured viscosity, pvT and curing data, numerical analysis of the multi cycle injection molding was conducted using simulation software (Sigma V5.0).

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

A New All-optical Flip-flop Based on Absorption Nulls of an Injection-locked FP-LD

  • Lee, Hyuek Jae
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • A new all-optical flip-flop (AOFF) method based on the absorption nulls of an injection-locked Fabry-Perot laser diode (FP-LD) in transverse magnetic (TM) mode is proposed and experimentally demonstrated. For the set and reset operations of the AOFF, injection locking and the destructive minus of beating in transverse electric (TE) mode are used. The absorption nulls on the TM mode are modulated according to the operations, and then non-inverted (Q) and inverted (${\bar{Q}}$) outputs can be obtained simultaneously. Thanks to the use of several absorption nulls, the proposed AOFF can achieve multiple outputs with extinction ratios of more than 15 dB. Even though the experiment is demonstrated at 100 Mbit/s, the results of previous experiments using the injection of a CW holding beam imply that the operation speed can increase to 10 Gbit/s.

Programming Characteristics of the Multi-bit Devices Based on SONOS Structure (SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성)

  • 김주연
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.771-774
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by 0.35 $\mu\textrm{m}$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the multi-bit operation per cell, charges must be locally frapped in the nitride layer above the channel near the source-drain junction. Programming method is selected by Channel Hot Electron (CUE) injection which is available for localized trap in nitride film. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve are investigated. The multi-bit operation which stores two-bit per cell is investigated. Also, Hot Hole(HH) injection for fast erasing is used. The fabricated SONOS devices have ultra-thinner gate dielectrics and then have lower programming voltage, simpler process and better scalability compared to any other multi-bit storage Flash memory. Our programming characteristics are shown to be the most promising for the multi-bit flash memory.

A Study on the Control Characteristics for Reduction of Particulate Material by HC Injection (HC 분사에 의한 디젤 분진 저감의 제어특성 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.968-975
    • /
    • 2009
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter using the HC injection. This research emphasized on the development of Continuously Regenerating DOC/DPF and HC technology which was the best particulate matters removing technology of current existing technology. This experimental study has been conducted with equipped a Continuously Regenerating DOC/DPF and HC injection on displacement 2.0, 3.3 $\ell$ diesel engine and compared in terms of particulate material and emission. In this study, we could constructed 3 kinds of database according to quantity of temperature to decide the HC injection quantity and develop DOC/DPF ECU algorithm.

An Analytic Study on the Occurrence of Adverse Drug Reactions of Traditional Chinese Medicine Injections (중약주사제 부작용 발생에 관한 분석 연구)

  • Hwang, Ji Hye;Song, Ho Sueb
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.6
    • /
    • pp.219-227
    • /
    • 2021
  • The purpose of this study is to analyze the side effects (ADR) of Traditional Chinese Medicine (TCM) injections by age, injection type, symptoms, and causes, and to find preventive solutions for ADR. For the ADR of TCM injection data collected during the search period from January 1, 2010 to December 31, 2020, the correlation between each section was analyzed by subdividing it into age, injection type, symptoms and causes. CNKI, PubMed, and EMBASE were used to collect the clinical data. 'Chinese herbal injection', 'Traditional Chinese Medicine injection', 'Chinese herbal injection side effect', 'Chinese herbal injection adverse drug reaction' were used for the keyword from the database. All data were collected mainly for TCM injection and the causes of ADR due to TCM injection. However, data not related to the relevant study or TCM injection were excluded from this study. Among a total of 941 studies collected during the search period from January 1, 2010 to December 31, 2020, a total of 10 studies were selected for final analysis. In 1462 clinical data sets, ADR by gender was higher in males than females. By age, 41 to 60 years were the most common. The incidence of ADR by injection type was highest in the blood regulating injection type. Data analysis showed Xueshuantong injection had the highest ADR. Among the symptoms of ADR, skin diseases were the most common. The most common cause of ADR was the unreasonable use of drugs. In China, for ADR management, the use of TCM injections is recommended according to the basic principles for the clinical use of TCM injections established by the Chinese government. In this study, we analyzed the current status and causes of ADR in TCM injections, and found a preventive solution. It is expected that it can be used as basic data to increase the usability of pharmacopuncture and herbal medicines in Korea in the future.

Current Transfer Structure based Current Memory using Support MOS Capacitor (Support MOS Capacitor를 이용한 Current Transfer 구조의 전류 메모리 회로)

  • Kim, Hyung-Min;Park, So-Youn;Lee, Daniel-Juhun;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.487-494
    • /
    • 2020
  • In this paper, we propose a current memory circuit design that reduces static power consumption and maximizes the advantages of current mode signal processing. The proposed current memory circuit minimizes the problem in which the current transfer error increases as the data transfer time increases due to clock-feedthrough and charge-injection of the existing current memory circuit. The proposed circuit is designed to insert a support MOS capacitor that maximizes the Miller effect in the current transfer structure capable of low-power operation. As a result, it shows the improved current transfer error according to the memory time. From the experimental results of the chip, manufactured with MagnaChip / SK Hynix 0.35 process, it was verified that the current transfer error, according to the memory time, reduced to 5% or less.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.