• Title/Summary/Keyword: crushed coarse aggregate

Search Result 85, Processing Time 0.024 seconds

Property Evaluation of the Concrete Replacing 5-13mm Recycled Coarse Aggregates (5~13mm 입도분급 순환 굵은 골재 혼합사용에 따른 콘크리트의 특성평가)

  • Han, Min-Cheol;Song, Young-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • This paper is to investigate experimentally the effect of substitution of recycled coarse aggregate(RCA) under 13mm on the engineering properties of the concrete using gap graded coarse aggregates. Concretes with 0.4 of water to cement ratio(W/C) were fabricated to achieve 30MPa of design strength with coarse aggregate over 13mm in size with the maximum size of 25mm. RCA was substituted for coarse aggregate over 13mm from 10% to 50% and crushed coarse aggregate under 13mm was also substituted for coarse aggregate over 13mm from 20% to 40%, respectively. Test results indicated that the replacement of RCA up to 20% resulted in an increase of fluidity and strength. It also caused a decrease in the drying shrinkage due to dense packing effect by achieving continuous grading of mixed aggregates. For practical application of RCA, when properly substituted, the use of RCA enabled the concrete to reduce water contents and sand to aggregate ratio in mixing design stage of the concrete. And, it can also enhance the compressive strength of the concrete.

Absorption Properties of Coarse Aggregate according to Pressurization for Development of High Fluidity Concrete under High Pressure Pumping (고압송용 고유동콘크리트 개발을 위한 가압에 따른 굵은골재의 흡수 특성)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.122-129
    • /
    • 2016
  • In this study, we developed a pressing device which can reproduce the pressure of concrete inside the conveying pipe as a part of the basic study to development of high fluidity concrete under high pressure pumping. Using this pressing device, we evaluated a absorption properties of aggregate that are crushed coarse aggregate, river gravel and lightweight coarse aggregate according to pressure of coarse aggregate and aggregate inside a high fluidity concrete, focused on the reduction of unit water quantity by pressure. In addition, it was evaluated the compressive strength of high fluidity concrete about before and after of pressive. Test a result, case of condition under the high pressure of 250 bar, absorption ratio of crushed coarse aggregate and river gravel were not increased above the surface absorption, absorption ratio of lightweight coarse aggregate was increased than the surface absorption.

Application on Concrete using Artificial Aggregate with Paper Sludge Ash (제지 슬러지 소각회 인공골재의 콘크리트에의 적용)

  • 문경주;백명종;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.173-178
    • /
    • 1998
  • This study is described the experimental result of the development of artificial aggregate using paper sludge ash and the application of it in concrete. Artificial aggregates are prepared with crushed stone in the variety aspect. Therefore, Quality properties of artificial aggregate using paper sludge ash are fairly corresponded with it of crushed stone. For the application of artificial aggregate using paper sludge ash in concrete, Coarse aggregates are replaced with artificial aggregate using paper sludge ash in the constant of volume(0%, 30%, 70%, 100%). It is conclued from the test results that the artificial aggregate using paper sludge ash could be used replacement of coarse aggregate in concrete. Continuous study should be planned for improvement of it's quality.

  • PDF

Use of waste glass as coarse aggregate in concrete: mechanical properties

  • Yan, Lan-lan;Liang, Jiong-Feng
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The possibility of using recycled coarse glass aggregates as a substitute for natural crushed stone are relatively limited. In order to promote it for engineering application, this paper reports the effect of coarse glass aggregate on mechanical behavior of concrete. The coarse aggregates are substituted for coarse glass aggregate (CGA) as 0%,20%,40%,60%,80% and 100%.The results show that increasing the coarse glass aggregate content cause decrease in compressive strength, the elastic modulus, the splitting tensile strength, the flexural strength. An equation is presented to generate the relationship between cube compressive strength and prism compressive strength, the relationship between cube compressive strength and elastic modulus, the relationship between cube compressive strength and splitting tensile strength, the relationship between cube compressive strength and flexural strength of coarse glass concrete.

Influencing Factor on Thermal Coefficient of Concrete due to Aggregate Types (골재종류가 콘크리트의 열팽창계수에 미치는 영향)

  • 김진철;양성철;김남호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.249-254
    • /
    • 2003
  • The thermal coefficient of concrete is measured using dilatometer (AASHTO TP60) and strain gage. Testing parameters such as six different coarse aggregate types, cycles of warming and cooling, specimen shape and measurement types were investigated to evaluate the influencing factors for thermal coefficient of concrete. According to experimental results, the thermal coefficient of concrete made with crushed aggregate showed 9.2 -10.$\mu\varepsilon/^{\circ}C$, , however recycled coarse aggregate classified type II showed a little increasing in comparison with crushed aggregate. The thermal coefficient of concrete made with recycled aggregate was reduced 0.2-0.4$\mu\varepsilon/^{\circ}C$, under temperature cycles. However, specimen shapes were revealed as mainly affecting factors on the thermal coefficient of concrete. Finally the thermal coefficient value determined by the dilatometer device was shown to be similar to the value from PML 60.

  • PDF

Effect of Maximum Size of Coarse Aggregate on Passing Performance of Concrete between Reinforcing Bars (굵은골재의 최대치수가 콘크리트의 간극통과성에 미치는 영향)

  • Baik Dae-Hyun;Yoon Seob;Kim Jung-Bin;Lee Seong-Yeun;Yoon Ki-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • This study investigated filling performance of concrete which can pass between reinforcing bars and be fully filled, and examined fundamental properties of concrete which is before or after hardened state, in response to maximum size of coarse aggregate. This study was also originally intended to find out one of the method that can improve concrete quality, using crushed coarse aggregate. Test showed that passing ratio of concrete decreased as aggregate site increased and as space between reinforcing bars decreased. In addition concrete using bigger size of coarse aggregate exhibited slightly higher compressive strength and showed lower length change ratio of drying shrinkage.

  • PDF

An Experimental Study on the Fundamental Properties of Electric Pole Recycled Aggregate(EPRA) and Characteristics of High Strength Concrete by Replacement Ratios of EPRA (폐전주 재생골재의 기초물성 및 대체율에 따른 고강도영역 재생골재 콘크리트의 특성에 관한 실험적 연구)

  • 이강우;이종호;강석표;최세진;최희용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.495-500
    • /
    • 2001
  • In this study, it was analized and examined fundamental properties of Electric Pole Recycled Aggregate(EPRA) and hardened properties & chemical resistance with H$_2$SO$_4$by replacement ratios of EPRA, and the results are as follows 1) In the case of electric pole recycled coarse aggregate, All fundamental properties are better than that of normal recycled aggregate and both water absorption and amount of crushed loss are with level of natural aggregate 2) As the replacement ratio of electric pole recycled fine aggregate is increased strength development is decreased. but in the case of coarse aggregate, that of it is with level of natural aggregate 3) As the replacement ratio of electric pole recycled fine aggregate is increased chemical resistance is decreased. but in the case of coarse aggregate, that of it is with level of natural aggregate

  • PDF

Properties of Polymer Permeability Concrete Using Recycled Aggregate (재생골재를 활용한 폴리머 투수콘크리트의 특성)

  • Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung;Joung, Duck-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.415-418
    • /
    • 2003
  • This study is performed to examine properties of polymer permeability concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate are performed. As a result, compressive strength, flexural strength and coefficient of permeability of polymer permeability concrete containing recycled coarse aggregate are in the range of $180{\sim}200kgf/cm^2,\;58{\sim}64kgf/cm^2\;and\;4.6{\times}10^{-2}{\sim}6.9{\times}10^{-2}cm/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $192kgf/cm^2,\;65kgf/cm^2\;and\;6.1{\times}10^{-2}cm/s$, respectively. Accordingly, recycled coarse aggregate is expected that can be utilizing as an aggregate of polymer permeability concrete.

  • PDF

Characterization of Recycled Coarse Aggregate (RCA) via a Surface Coating Method

  • Ryou, J.S.;Lee, Y.S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2014
  • Recycled coarse aggregate (RCA) made from waste concrete is not a suitable structural material as it has high absorption of cement mortar, which adheres on the aggregate surface and on the tiny cracks thereon. Therefore, when using RCA made from waste concrete, much water must be added with the concrete, and slump loss occurs when transporting. Hence, its workability is significantly worse than that of other materials. In this study, surface of RCA was coated with water-soluble polycarboxylate (PC) dispersant so that its characteristics improved. Each possibility was evaluated: whether its slump loss can be controlled, by measuring its workability based on the elapsed time; and whether it can be used as a structural material, by measuring its strength. Moreover, the carbonation due to cement mortar adhesion was measured through a carbonation test. As a result, RCA coated with PC dispersant was found to be better than crushed coarse aggregate and RCA when the physical properties of the fresh concrete and the mechanical, durability of the hardened concrete were tested.

Physical and Mechanical Properties of Recycled Polymer Concrete (재생 폴리머 콘크리트의 물리.역학적 특성)

  • Baek, Seung-Chul;Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.411-414
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of recycled polymer concrete using recycled coarse aggregate and recycled fine aggregate. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate and recycled fine aggregate are performed. As a result, compressive strength, flexural strength and pulse velocity of polymer concrete containing recycled coarse aggregate are in the range of $826{\sim}849kgf/cm^2,\;192{\sim}200kgf/cm^2\;and\;3,932{\sim}4,000m/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $805kgf/cm^2,\;197kgf/cm^2$ and 3,931 m/s, respectively. Accordingly, recycled aggregates is expected that can be utilizing as an aggregate of polymer concrete.

  • PDF