• Title/Summary/Keyword: crowd simulation

Search Result 38, Processing Time 0.022 seconds

Measurement and Analysis of Moving Velocity of Elementary School Students Under a Escape Drill (초등학생의 피난 훈련 상황하에서의 이동속도 측정 및 분석에 관한 연구)

  • 김응식;이정수;김수영
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2003
  • This study measures the various moving velocities of elementary school children under situation of fire drill and suggests the methods of analysis. The velocities are such as the exiting velocity at the door of the classroom, personal walking velocity at corridor, velocity according to density of crowd and personal walking velocity at stairway. For these measurement an elementary school in Daejeon is chosen and 15 girls and 15 boys are selected in each grade. Finally speed data of the children is obtained and we can apply this data for the evacuation simulation of a school.

Passenger evacuation simulation considering the heeling angle change during sinking

  • Kim, Hyuncheol;Roh, Myung-Il;Han, Soonhung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.329-343
    • /
    • 2019
  • In order to simulate the evacuation simulation of a ship during a sinking, the slope angle change of the ship must be reflected during the simulation. In this study, the passenger evacuation simulation is implemented by continuously applying the heeling angle change during sinking. To reflect crowd behavior, the human density and the congestion algorithm were developed in this research and the walking speed experiment in the special situation occurring in the inclined ship was conducted. Evacuation simulation was carried out by applying the experimental results and the change of the walking speed according to the heeling angle of the ship. In order to verify the evacuation simulation, test items suggested by International Maritime Organization (IMO) and SAFEGUARD Validation Data Set conducted on a large Ro-PAX ferry (SGVDS 1) which performed real evacuation trial in full-scale ships were performed and the results of simulation were analyzed. Based on hypothetical scenario of when a normal evacuation command is delivered to the passengers of MV SEWOL in time, we predicted and analyzed the evacuation process and the number of casualties.

Evacuation Analysis for a Passenger Ship Using a Cellular Automata Model with Group Behavior (집단 행동을 나타내는 Cellular Automata 모델을 사용한 여객선 승객 탈출 분석)

  • Cha, Ju-Hwan;Ha, Sol;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.149-155
    • /
    • 2011
  • This paper presents simulations of advance evacuation analysis using a cellular automata model for passenger behavior in an emergency of passenger ship. The proposed cellular automata model divides the space in a uniform grid called "cell." Each passenger is located in a cell and moves to another cell according to a set of local rules assumed to be associated with the individual and crowd behaviors of the passengers. To verify the usefulness of the proposed cellular automata model, 11 tests, all of which are specified in International Maritime Organization Maritime Safety Committee/ Circulation 1238 (IMO MSC/Circ. 1238), were implemented, and it was confirmed that all the requirements of these tests had been met.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Development of Crowd Evacuation Simulation System for Building Fire (건축물 화재에 따른 군중 피난 시뮬레이션 시스템 개발)

  • Rie, Dong-Ho;Joe, June-Seong;Park, Jong-Seung;Kim, Jung-Yup
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.304-309
    • /
    • 2008
  • 본 논문은 기존 기발된 재실자의 탈출 계획 및 예측 프로그램 개발에 대해 길 찾기를 위한 알고리즘으로는 Dijkstra 알고리즘, Best-First Search 알고리즘, Johnson 알고리즘 등이 있으며 가장 안정적으로 알고리즘 구현이 가능한 A*알고리즘을 적용하였다. 따라서, 본 개발 프로그램은 재실자가 대피 목적지를 향한 최적의 길 찾기를 이용하여 가장 가까운 거리에 있는 탈출구를 효율적으로 찾을 수가 있으며 재실자의 사실감 있는 대피 이동 동선의 구현을 위해 기존의 경직된 경로를 매끄럽게 구현하였다. 탈출구는 흐름율과 정체 반경을 적용하여 재실자가 탈출구에 밀집하였을 경우 병목 현상이 발생하도록 하여 대피현상이 실제 상황과 유사하도록 프로그램을 구축하였다. 본 대피프로그램은 실제 건물의 CAD도면을 import 가능하도록 구축함으로서 대피평가시간을 절약할 수 있도록 하였다.

  • PDF

A Study on the Evacuation Time by the Influence of Decreasing Visibility on Fire (화재시 가시도 변화에 따른 대피속도 산정에 관한 연구)

  • Rie, Dong-Ho;Park, Jong-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.21-26
    • /
    • 2007
  • The computer program is developed to simulate the evacauation time for a building which is made geometrically complex. The program is intended for use both as a search and a design tool to analyze the evacuation safety through a wide range of structure environments. The computer program has a function of importing FDS's result to each individual resident in the building. These attributes include a walking speed reduction by producing visibility reduction for each person on the fire. $A^*$ pathfinding algorithm is adopted to calculate the simulation of escape movement, overtaking, route deviation, and adjustments to individual speeds due to the proximity of crowd members. Finally, a case study for a theater is presented to compared the calculated evacuation time with SIMULEX in detail. This program contribute to a computer program that evaluates the evacuation time of individual occupants as they walk towards, and through the exits especially for building, underground spaces like a subway or tunnel.

Space and Pedestrian Modeling Method for Crowd Evacuation Simulation in Large-scale Buildings (초대형 건축물에서 군중의 대피 시뮬레이션을 위한 공간 및 보행자 모델링 기법)

  • Shin, Dong-Cheol;Lee, Jong-Min;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.307-310
    • /
    • 2009
  • 본 논문은 대형 건축물 내에서의 보행자 대피 시뮬레이션을 위해, 광범위한 네트워크 모델과 세밀한 네트워크 모델을 통합하는 방법과보행자가 자연스럽게 벽이나 장애물을 피하면서 이동할 수 있도록 하는 개선된 보행자 이동 모델을 제안한다. 제안하는 네트워크 모델을 통해 기존의 광범위 네트워크 모델에서 분석할 수 없는 보행자 개개인의 이동정보를 세밀한 네트워크보다 적은 양의 연산으로 계산할 수 있었고, 개선된 보행자 이동 모델을 통해 보행자가 자연스럽게 벽이나 장애물을 피하면서 이동할 수 있도록 하였다. 제안하는 방법을 대형 건축물인 코엑스 몰에 적용하여 대피 시뮬레이션을 수행한 결과, 3000명의 보행자에 대해 초당 10번 이상의 시뮬레이션 정보를 계산할 수 있었고, 대피 시의 방향 유도에 따른 대피 시간을 확인할 수 있었다.

  • PDF

Fast Motion Synthesis of Massive Number of Quadruped Animals

  • Sung, Man-Kyu
    • International Journal of Contents
    • /
    • v.7 no.3
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents a fast and practical motion synthesis algorithm for massive number of quadruped animals. The algorithm constructs so called speed maps that contain a set of same style motions but different speed from a single cyclic motion by using IK(Inverse Kinematics) solver. Then, those speed maps are connected each other to form a motion graph. At run time, given a point trajectory that obtained from user specification or simulators, the algorithm retrieves proper speed motions from the graph, and modifies and stitches them together to create a long seamless motion in real time. Since our algorithm mainly targets on the massive quadruped animal motions, the motion graph create wide variety of different size of characters for each trajectory and automatically adjusted synthesized motions without causing artifact such as foot skating. The performance of algorithm is verified through several experiments

A Study on the Development of Performance Based Fire Risk Assesment Program (FDS를 활용한 성능위주 화재위험성평가 프로그램개발에 관한 연구)

  • Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • `SOS', Simulator Of Safety assessment for fire, was developed to simulate fire safety assessment for a structure which is geometrically complex. The program(SOS) is intended to use for searching as well as designing tools to analyse the evacuation safety through a wide range of structure conditions. The computer program has a function which importing FDS's calculating results to each individual resident in the structure. These attributes include a walking speed reduction by producing visibility reduction for each person on the fire. $A^*$ pathfinding algorithm is adopted to calculate the simulation of escape movement, overtaking, route deviation, and adjustments individual speeds in accordance with the proximity of crowd members. This SOS program contributes to a computer package that evaluates the fire safety assessment of individual occupants as they walk towards, and through the exits especially for building, underground spaces like a subway or tunnel.

Primitive-Based Elastic Deformation (프리미티브 기반 탄성체 시뮬레이션)

  • Hong, Eun-Ki;Kim, Jong-Hyun;Lee, Jung;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • We propose a novel framework for controlling various and complex models using primitive model. To control original model, first we correspond original model to simplified primitive model that contains original model. After doing deformable simulation with primitive model, we compute original model by inversion of result. Since existing method can only control one type formed models, our method - which can control all difference formed models by only one primitive model - has contribution. In conclusion, we show results that efficiently and intuitionally control the various deformable models by using one example primitive model.