
Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals 19

International Journal of Contents, Vol.7, No.3, Sep 2011

Fast Motion Synthesis of Massive Number of Quadruped Animals

Mankyu Sung

ETRI

161 KaJung-dong, Yusong-gu, Daejeon, KOREA

ABSTRACT

This paper presents a fast and practical motion synthesis algorithm for massive number of quadruped animals. The algorithm

constructs so called speed maps that contain a set of same style motions but different speed from a single cyclic motion by using

IK(Inverse Kinematics) solver. Then, those speed maps are connected each other to form a motion graph. At run time, given a point

trajectory that obtained from user specification or simulators, the algorithm retrieves proper speed motions from the graph, and

modifies and stitches them together to create a long seamless motion in real time. Since our algorithm mainly targets on the massive

quadruped animal motions, the motion graph create wide variety of different size of characters for each trajectory and automatically

adjusted synthesized motions without causing artifact such as foot skating. The performance of algorithm is verified through several

experiments

Keywords: Crowd Simulation, Motion Synthesis, Quadruped Animals

1. INTRODUCTION

 A large number of motion synthesis methods have been

proposed by the computer animation research community in

recent years. The primal reason for the high popularity of

motion synthesis techniques corresponds with the wide spread

of 3D computer games and wide use of computer graphics-

based special effects in feature Þlms or movies. However, most

of the researches have focused on synthesizing motions for

only human-like characters. Although the motions of human

characters are still an animator’s major concern most of the

time, many non-human-like characters play important roles in

current movies and animation Þlms. For example, in movies

such as “The Chronicles of Narnia” or “The Golden Compass”

lots of animals support the main characters or are sometimes

themselves the main characters. In general, animal motions are

usually made by the traditional key frame method. Even though

this method has an advantage in Þne control over motion, it

requires intensive labor, an artistic sense, and a signiÞcant

amount of time for creating animation, which is a big hurdle for

fast production. In particular, if we want to animate a massive

number of animals, the problem gets even worse. Alternatively,

for human motions, several data-driven methods are proposed

to meet the realistic animation requirements as well as to

satisfy user-speciÞed controls. For example, graph-based

methods [1], [2], [3] and statistical model-based methods [4],

[5] have their own advantages and disadvantages for practical

* Corresponding author. E-mail : mksung@etri.re.kr

Manuscript received Jun 30, 2011 ; accepted Aug.09, 2011

Fig. 1. 200 horses in movement : our algorithm can synthesize

natural motions for a lot of quadruped animals.

use. But essentially, those methods are tested only for human

characters and are quite limited unless there is a large amount

of motion data available.

This paper proposes a fast locomotion synthesizing method,

shown in Fig. 1, for a large number of quadruped animals. This

method is basically data-driven that uses motion capture data.

However, it focuses on developing techniques that exploit an

existing small number of motions extensively. This is an

inevitable choice because capturing animal motion is very hard

and quite expensive. Our method, on the other hand, requires

only a single cyclic motion of four different quadruped gait

types (walking, trotting, cantering and galloping) and transition

motions between them. Then, the algorithm artiÞcially creates a

new set of the same type of motions with wide variation of

different speeds, which we call a speed map. In order to obtain

different motion speeds from the original input motion, the

speed map motions analyze the gait pattern and apply the

http://dx.doi.org/10.5392/IJoC.2011.7.3.019

20 Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals

International Journal of Contents, Vol.7, No.3, Sep 2011

specialized Inverse Kinematics(IK) algorithm to have different

gait lengths and limb conÞgurations. In constructing a speed

map, the original styles of motion, especially the order of foot

planting on the ground, are maintained because it characterizes

the speciÞc gait types of quadruped animals.

The various speedy motions in the speed map allow

characters to transit motions smoothly from normal moving to

fast moving, and vice versa. This feature is very important in

real applications because training animals to obtain very

speciÞc speed motions is almost impossible, although most of

the games and movies require very speciÞc speed motions.

These maps, constructed through the procedure above, are then

connected with each other to form a well-known motion graph

structure where four hub nodes represent four different

locomotion types and edges represent speed map motions [1],

[2], [3]. The construction of a speed map and motion graph is

done as preprocessing steps. At run time, the user inputs a

guideline point trajectory for each character. This trajectory is

created by a user control or by outside simulators. The

trajectory represents the root joint positions of a character over

time. Thus, the time duration between the points represents a

frame time, which means the closer the distance between two

adjacent points, the slower the character moves. Given the

trajectories, the algorithm puts an arbitrary size of animal

characters on a trajectory and then starts to traverse the motion

graph to retrieve proper speed motions out of the graph. These

motions are warped to make the character follow the curve of

the trajectory exactly. Finally, the retrieved motions are then

smoothly stitched together to make long motions.

Our method has the following contributions over previous

methods. First, one of the major disadvantages of motion graph

based motion synthesis is that it requires a big corpus of

motions to be used in real applications. Our method, on the

other hand, does not require many motion data because we

artiÞcially synthesize many different motions and warp them to

make them move on a randomly shaped curve. Second, we

extend the existing foot skating clean-up algorithm for human

characters [6] to four-legged animal motion data. In this

process, all important characteristics of the original motion are

maintained. Third, our algorithm is able to synthesize a large

number of animal characters with a wide variety of different

sizes at the same time. The input guide line trajectory is totally

independent of speciÞc characters. Therefore, the proposed

method allows adding any size of character. The motion

synthesis takes the character size as a parameter and

synthesizes scaled motions accordingly

2. RELATED WORK

Traditionally, animal motions for feature Þlms have been

created through elaborate a key-frame animation technique [7].

Fine control over movement is the major reason for this

dominant use of this method, although animators require so

many reference videos and creativity to Þgure out their

movement [7]. A lot of robotics researchers have been studying

quadruped robots for several decades [8], [9]. However, these

researches do not directly reßect the high realistic animal

motions because their focus is on creating stable robots that can

move on wide a range of different situations.

For realistic animation of animals, several researches have

studied on how to capture real motions. Because of a high

difÞculty in capturing wild animals or dynamic human motions,

they use live video sequences such as documentary Þlm to

reconstruct the 3D model of animals, or incorporate on existing

motion capture database [10], [11] or copying and modifying

motion from human motion capture data [22]. However, their

methods do not create totally new motions unless there are live

videos of the new motions. Also, only relatively simple

motions are able to be captured. A physical-simulation method

is another way to generate quadruped motions. Raivert et al

designed a control system that activates or deactivates actuators

to represent some particular behaviors for legged characters

[12]. Torkos et al proposed a trajectory-based optimization

technique for synthesizing motions for quadruped animals [13].

In their approach, users are required to input footprint locations,

their timing, and stylistic hint for motions, the system then

applies physics and optimization to estimate the body posture

of the quadruped. Their approach is similar to our method in

this paper in that both use footprint location to change the

speed of motion, but we use motion capture data as the input

data instead. Therefore, we do not need any physics or high

computation load in the optimization process. Most recently,

Coros et al proposes a physical model for quadruped animal

that synthesize motions such as walk, trot, pace and canter [21].

Although their method can create a wide variety of motions

automatically, the quality of motion does not meet the motion

capture data.

Wampler et al proposed an optimization-based animal

locomotion algorithm [14]. In their method, they took the shape

of an animal and its motions as a component of continuous

optimization framework. In order to animate physically

realistic motions, they parameterize the radius and length of

limbs so that they are adjusted for the given gait. Although

their synthesized motions are physically realistic, they ignore

the complexity of the non-mechanical structure of real animal

legs, which sometimes does not convey the details of real

animals.

For human motions, motion blending has been an efÞcient

tool to create parameterized motions [15], [16]. However, one

of the signiÞcant artifacts of motion blending is that it does not

guarantee to satisfy the important kinematic constraint, a so-

called foot plant, which requires some part of a foot to remain

stationary on the ground. An explicit solver for the foot skating

problem has been introduced in [6] by Lucas et al. We extend

their bipedal IK solver to quadruped animals to Þnd the limb

conÞguration of animals when constructing the speed map. In

this process, the beat pattern, which means the order of four

feet contacting with the ground, is maintained. This pattern is

important to characterize a different locomotion style. The

motion graph technology has been drawing a lot of attention in

the computer graphics community because of its simplicity and

implementation ease [3], [1], [2]. However, one of the main

Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals 21

International Journal of Contents, Vol.7, No.3, Sep 2011

drawbacks is that it needs a big corpus of motion data for good

connectivity in real applications. Zhao et al proposed a simple

method that uses motion blending to create a new set of

motions with similar poses as the original motion set for

constructing the motion graph [17]. Our method is similar to

WALK TROT

CANTER GALLOP
Fig. 2. Left: Four typical gait types of a quadruped animal (horse). Right: Beat patterns of four gait types (equusite.com).

their method in that it also creates many motions out of a small

set of input motions. However, we use a speed-parameterized

IK technique instead of motion blending, which is required for

synthesizing massive animal locomotion.

3. SPEED MAP CONSTUCTION

Because our goal is to synthesize motions for a large number

of quadruped animals, we need a wide range of different speed

motions beforehand. These motions, called a speed map,

become input data in synthesizing motions at run time when a

dynamic change of speed motions is required. In general,

quadruped animals have only a few gait patterns that they use

frequently, although there are many possible foot fall patterns

[18]. Four typical gait patterns are shown in Fig. 2. Depending

on the gait-patterns, the orders of footing on the ground are

different, as shown in Fig. 2, and their speed is also changed.

For example, the walk motion has a four-beat pattern with the

slowest speed where the left hind leg is put on the ground Þrst,

and then the right fore leg is placed next, with the left hind leg

and the left fore-leg placed later. On the other hand, the trot

motion has a two beat gait with a faster speed than walking in

which diagonal foot plants are always the same time stamps.

The speed of motions, s, is deÞned as follows throughout this

paper.

where l is the length of the root joint trajectory and n is the

number of frames.

Our basic strategy is to input a single cyclic motion for each

gait type and automatically enrich it through parameterizing its

speed as shown in Fig. 3. Under the definition of motion speed,

to obtain a different speed of the original motion, we have two

choices: adjusting the number of frames (n) or adjusting the

length of the root joint trajectory (l). Since adjusting the

number of frames is not what we want, we fix the number of

frames and adjust the length of root joint trajectory.

Specifically, let’s say that the original input motion has speed, s,

then we increment or decrement this speed by a predefined .

Then, the new length becomes l´= (s)l and s = s

In this process, we have to make sure that two important

features of the original motion are kept. First, all foot skating

artifacts should be removed. Foot skating happens when the

root joint position, which is responsible for the global position

of the character, is not properly coordinated with the limb

conÞguration. Therefore, simply forcing a change in the length

of root trajectory causes a signiÞcant foot skating of the

character. To remove the foot skating, we need to Þgure out the

global position of end-effector joint at the contact frame and its

time duration. Then, the IK solver Þnds proper limb

conÞgurations for that. Second, the gait beat pattern of the

original motion as shown in Fig. 2, should be maintained. Even

after we relocate the foot position for changing the speed, the

order of foot plants should be preserved. In order to do that, we

manually annotate the foot plant frames (fc) that have a time

interval, and the associated joint (jc) of the input motions by the

order of time, and then feed them into the construction step as a

constraint. This constraint should be satisÞed in creating the

speed map.

The speed maps are constructed through the following order.

1. Relocation of root joint position: Let us say that di,j

denotes the 2D projected distance between root joints at frames

i and j. We compute the df,f 1 for all adjacent frames. Then,

given the new length of the motion trajectory, l´, the amount of

adjustment for df,f 1is l´/ f .This value is multiplied on df,f 1 to

compute a new distance d´f,f 1. Suppose that the global position

of j joint at frame f is Pj(f) where root joint has 0 in j. Then,

the new root position, P´0(f), can be simply calculated as

P´0(f) =P´0(f 1) + ´df,f 1, f 1. Note that if s is bigger than1, it

creates a faster motion, whereas if s is smaller than 1, it

generates a slower motion. Also, for the very Þrst frame, P´0(0)

equals P0(0).

2. Finding the joint position of end effectors: The next step is

22 Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals

International Journal of Contents, Vol.7, No.3, Sep 2011

to find the proper position of end effector joints, which is the

joint contacting with the ground, that minimizes the foot

skating. For this, from the constraint of the input motion

indicating foot plant frames, fc, and end effector joint, Jc, we

first compute the average position Pjc(fc) of Jc during the fc of

the original input motion. This is the original foot plant

positions before relocating the root joint, so, we need to

relocate the foot plant position as well. For this, we compute

Original

 Motion

smin Speed Motion

Speed Motion

Speed Motion

Speed Motion

s2

s3

smax

.....

Foot Plant

Adjustment

 IK

Solver

Fig. 3. Speed map construction process

the scalar value distance, dc, which is the difference between

P´0(fc) and P0(fc). This is the magnitude of direction vector, V,

that needs to be added to the original Pjc(fc). The only

remaining problem is to find V. In our approach, we set the V

by computing a vector between two adjacent foot prints of the

same foot. Figure4 illustrates this process. The new foot plant

position P´jc(fc)is computed by P´jc(fc)= V+ Pjc(fc).

3. IK solving: Given P´jc(fc), we apply the IK solver to Þnd a

limb conÞguration. To maintain the order of beat pattern of the

original motion, we apply the IK by the order of fc. The IK

solver we use is similar to the one that Lucas et al proposed in

[6] with some extension for meeting the constraints above. We

brießy overview our IK solver here with emphasis on the

extensions that we made in this section. More detailed

information can be found in [6].

Figure 5 shows four steps for IK processing. At the Þrst step,

the algorithm computes the hinge angle analytically. Concise

derivation of the equation for computing this angle can be

found [19]. One drawback of the original algorithm for

computing the hinge angle is that it assumes that the plane of

rotation of the hinge is deÞned by the thigh and shin. Most of

the time, this hinge axis does not cause any problems, but when

the original limb is almost fully stretched, which is the case for

fast motions, slight changes of thigh and shin cause an

inconsistent change of sign of hinge axis over the frames,

which produces visually unpleasant hinge angle popping. This

is because the hinge axis is computed by the cross product of

two vectors, and where Pr, Ph, and Pjc represent

the global position of a limb root, hinge, and end effector,

respectively. The cross product generates a near to zero

magnitude vector when three positions are almost on a straight

line, which is not a desirable axis. To solve this problem, our

hinge axis is defined by two vectors, and instead

where Pt is a position of the toe whenever the original

definition of the hinge axis has a smaller magnitude than the

predefined threshold. At the second step, transform the limb

toward the target by finding the smallest amount of rotation

that makes the vectors and faces the same direction

with . At the third step, properly rotate the end effector

orientation so that it does not penetrate the ground. At the final

step, stretch the limb joint length unless it meets the target.

In the construction of a speed map for each gait type, we

decrease speed parameter s from maximum speed smax to smin by

. As a result, we construct roughly around 60 speed maps for

each gait type. In this process, we intentionally overlap the

speed range of two different gait types so that two speed

motions from different gait types can have the same speed as

shown in Fig.6. For example, a fast walking motion might have

the same speed as a slow trotting motion. This feature is a big

advantage for massive character animation where variation on

motions among a crowd is a critical issue.

Original Trot

 Foot Plants

Faster Trot

 Foot Plants
Slower Trot

 Foot Plants

Direction

 vector

original

slower

faster

FootPlant

Fig. 4. Foot plant adjustment for changing the speed of trot motions.

Blue circles represent the foot plants

4. BUILDING MOTION GRAPH

Constructed speed maps are connected with each other

through a motion graph [3], [1], [2]. Fig. 7 shows a motion

graph for quadruped animals (we only show a couple of edges

per speed map for simplicity). In building the motion graph,

transition motions between speed maps are also required for

smooth motion change between different gait types. Like an

original motion graph, an edge of the motion graph represents a

typical motion and nodes represent common poses. The

difference is that all edges in each walk, trot, canter and gallop

node come from the speed map rather than the original input

motions. When traversing the graph, we assume that all of the

characters are starting at the standing node. As they speed up,

they move up to the walk node, and then move to the trot node,

canter node, and gallop node, sequentially. When they need to

slow down, they follow the reverse order.

Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals 23

International Journal of Contents, Vol.7, No.3, Sep 2011

theta

Compute hinge angle Move toward target Orient end effector Stretch

targetlimb root

hinge

end effector

Fig. 5: IK process for finding limb configuration

5. GUIDELINE TRAJECTORY

Our approach requires the user to input a trajectory per

character. This trajectory, Ti(f), is a list of 3D points

representing a guideline for root joint position of the ith

character over time. The reason that we separate the simulation

of movement of characters that would be stored as a trajectory

from detailed motion synthesis of individual characters is that

aggregate behaviors of herds or crowds are very important in

massive character animations. An overall formation change of

crowds over time needs to be simulated and edited frequently

until the best scene comes up. Therefore, it is not desirable to

synthesize detailed motions for every character whenever

walk

trot

canter

gallop

Overlap

Slow

Fast

Fig. 6. The ranges of speed in speed map for four gait types

simulating the movement of herds or crowds. Our approach is

to simulate the collision-free movement of the overall

characters first, and then wear the detailed motions on them

next.

If the number of characters is not so large, then we can

create the trajectories in a manual manner, using a mouse drag

to capture the trajectory of characters on a virtual 3D

environment. However, if the number of characters is too big,

then manual capturing is impossible. In this case, we can use

other crowd or flocking simulation software such as Massive

software or Boids model. In the case of using commercial

software, we can make a simple script utility that stores the

positions of characters over time as a text file.

1. Smoothing: One assumption that we make over the

trajectories is that they should have smooth curvatures and not

contain any sharp turns. The point in a trajectory represents a

rough position of a character in the environment. Thus, even in

our smoothness assumption, if there is a discontinuity or noise

in the trajectory, synthesized motion does have quite noticeable

popping either. To remove this, we filtered Ti(f) with a low-

pass filter. The low-pass filter can be a general Gaussian filter,

which is widely used in image processing.

2. Re-sampling: We have to make sure that the speed of a

trajectory is within the speed range of the speed map.

Otherwise, we adjust the trajectory by the re-sampling process.

The speed range of the speed map can be easily found simply

by checking the fastest speed motion of the gallop speed map,

s´max, provided that the speed maps are constructed in such a

way that their speed ranges are overlapped. Note that the

slowest speed map is always zero because we assume that

characters always start from a standing pose. As a result, the

speed range of the speed map becomes 0 s s´max. Given this

speed range of the speed map, we need to check the speed

range of the trajectory for comparison. To check the speed

range of the trajectory, we first segment the entire trajectory

Ti(f) by m points, which is the average number of frames of

input walk, trot, canter, and gallop motion. As a result, we get n

segments Si.

where Pi and

For each segment Si, we compute the speed s(Si). After

computing the speed over all segments and sorting them, we

obtain the speed range for the

trajectory. By checking the speed ranges of all trajectories in

this way, we can get the speed range, ,

for all trajectories. Then, the two speed ranges, (smin, smax),

Fig. 7: A motion graph : four speed maps for quadruped animals are

connected with each other with transition motion

Speed Map

smax

Orig.

Trajectories

smin smax

smin smax

Modified

Trajectories

delta :

Speed

Speed

Speed

which is the speed range of the trajectory, and ,

which is the range of the speed map, are checked to see

Figure 8: Speed range adjustment of a trajectory for a given speed map

whether the speed range of a trajectory is within the range of

the speed map. If the speed of the trajectory is out of the range

24 Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals

International Journal of Contents, Vol.7, No.3, Sep 2011

of the speed map, then our

algorithm is not able to synthesize motions for the speed. To

solve this problem, we re-sample the trajectory to change its

speed. Unlike the case of speed map, where we change the

length of the trajectory to adjust the speed, we change the

number of points of the trajectory by fixing the length of the

trajectory. The reason for this is that the geometrical

characteristics of the trajectories such as length are a product of

a crowd simulator's high level path planning and interaction

among characters. Thus, it should be preserved.

The sampling rate r is calculated as follows:

Because of re-sampling, the range of trajectory turns to

 as shown in Fig.8. For example,

if r is 0.5, then we make all characters move at twice slower

speed.

One important point is that we must apply the sampling rate

r to the all trajectories. If we apply the new sampling only on a

few characters, which would make them move faster or slower,

the global formation of characters would be broken.

6. MOTION SYNTHESIS

Without loss of generality, we assume that animal characters

are at the beginning of their trajectory. Under this condition,

the motion synthesis step needs to create a long motion that

makes the character move along the trajectory while satisfying

the speed. Our basic strategy is to traverse the motion graph,

shown in Fig.7, and find the proper edges. Those edges, which

correspond to a piece of speed map motion, are then blended

together to get an exact speed motion. The blended motions are

then placed one after another along the trajectory. Motion

warping is necessary to bend the original motion trajectory to

match the trajectory. Transition motion is also placed when it

needs to traverse across different gait types. We describe the

details of each step in this section.

Since our goal is to synthesize motions for a lot of quadruped

animal characters, variation on the character size makes the

scene more interesting. To achieve the randomness on the

character size, we multiply the scale factor h, which is a real

value that is always bigger than minimum hmin but smaller than

a threshold maximum hmax, to all joint offset vectors to scale up

or down the character size. We then randomly distribute a

scale-adjusted character to all the trajectories.

After deciding the character size for each trajectory, the

algorithm starts to synthesize motions from the start of the

trajectory to the end. Motion synthesizing steps are illustrated

in Fig.9.

The algorithm first computes the speed of trajectory, s, over

m points of the trajectory. Then, using speed parameter s, it

traverses the motion graph to find the two closest edges of the

graph that have the speed s. One edge (M1) should be faster

than s, and the other edge (M2) should be slower than s. Note

that because we overlapped the speed ranges of speed map,

there might be multiple styles of motion that contain the speed

s. In this case, randomly select one style. The reason for

selecting the two best matched edges is that the speed map is

constructed in a discrete speed space. Thus, in most cases, there

is no motion that perfectly matches speed parameter s. We

resolve this through interpolation. Suppose that M1 has speed

s(M1) and M2 has speed s(M2). Then, we can obtain the speed

motion M with exact speed s by interpolating M1and M2 with

weight value !.

where and h is the scale factor.

The next step is to warp the motion M so that its motion

trajectory has the same shape of the Ti(f) where .

Figure 10 shows the warping process of two speed motions in a

row. The warping process includes two specific jobs. First,

based on the tangent of input trajectory, which is computed as

, where we rotate the

orientation of the root joint by . The root position P0(f) is also

repositioned using 2D transform matrix T, composed with

rotation and translation P0(f)-P0(f-1).

This process is similar to the motion path planning algorithm

[20]. Second, the warped motion is exactly located on Ti

using a 2D transform matrix that makes P0(f) into Pn, as can be

seen in the top image of Fig.10.

As a final step, newly warped motion () is smoothly

stitched with existing synthesized motions (T(M)) through

motion blending. For this purpose, we need margin frames

(around 10 frames) in the front and back of the input cycle

motions, as can be seen in the bottom of Fig.10.

The motion synthesis steps are iterated until it meets the end

point of the trajectory.

Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals 25

International Journal of Contents, Vol.7, No.3, Sep 2011

Fig. 9. Motion Synthesis Flow Diagram

Trajectory MotionWarping2D Ttransform

Motion Blending

0
-0.5

0.5
Weighting

Fig. 10. Top: Motion Warping Bottom: Motion Blending

7. EXPERIMENTS

To validate our algorithm, we have performed experiments

using animal motions. However, lack of available animal

motion capture data allows us to apply our algorithm on quite a

limited number of animal types. We bought commercially

available animal motion capture data from a motion capture

studio (The3DStudio.com).

We use the animal motions of a horse and dog for our

experiments. These motions are all sampled at 60Mhz. For the

horse, only 12 motion clips are used; four of them are a single

cycle of walk, trot, canter, and gallop motion for constructing

the speed map, and the rest of them are transition motions such

as static2walk, walk2static, walk2trot, trot2walk, trot2canter,

canter2trot, canter2gallop and gallop2canter. For the dog, on

the other hand, 9 motions are used because gallop motion is not

available.

All experiments were tested on an Intel Xeon 3.20GHz

processor PC with a graphics acceleration card.

Table1 shows detailed information about the speed maps.

Note that the speed range of each gait type is overlapped and

all speed map motions have the same number of frames of

input motion.

The first experiment is for testing whether our algorithm can

synthesize motions for any arbitrary curved path with various

speed changes. For this, we ask users to drag a mouse on the

3D virtual floor to represent the movement of a character, and

use it as a input trajectory. As a result, our experiment verified

that our algorithm makes the character follow the path exactly

and synthesize various styles of motion depending on the speed

change of the trajectory, as shown in Fig.11

The second experiment is for testing the performance of our

algorithm. We use OpenSteer library to simulate a maximum

of 500 characters (http://opensteer.sourceforge.net/).

Specifically, we use the Pedestrian plug-in that makes agents

follow a predefined control path. We put a small code in the

simulation loop to capture around 500 frames of 3D position of

characters over time and write out into a file. Figure 12 shows

snapshots of the simulation rendered with Maya.

Two specific tests are performed based on these trajectories.

First, as we increase the length of the trajectories from the

starting point to the end, we compute the total synthesizing

time of 500 characters. For comparison, we also test when we

synthesize all motions on the fly without using speed map. In

this case, to get the exact speed motion, we have to process all

root trajectory adjustment and limb configuration changes at

run time.

The result shows that the time cost increases almost linearly

as a function of trajectory length. And, on-the-fly synthesis is

almost twice slower than our speed map construction synthesis.

Second, we calculate the average time for synthesizing a single

frame as we increase the number of characters. Our result

shows that it takes only an average of 0.008 seconds for

synthesizing 480 frames for a character, which means that our

algorithm can synthesize motions at realtime speed, as shown

in Fig.13.

26 Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals

International Journal of Contents, Vol.7, No.3, Sep 2011

CanterCanter2Trot

Trot2Canter
Canter

Fig.11. Motion synthesis result for a single character with various speed changes

Fig.12. 300 dinosaurs running in herd (including biped dinosaurs)

Fig.13. Left: The total processing time with increasing the length of the trajectory.(Dashed line is the synthesis speed using speed map, and solid line

is the on-the-fly synthesis speed) Right: The average synthesizing time per frame, as a function of the number of characters

Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals 27

International Journal of Contents, Vol.7, No.3, Sep 2011

Table1. Information regarding speed map of four gait types of

horse motion

Gait

type

Time

(sec)

#of

motions

Speed range #of

frames

Walk 3.34 55 (0.08, 0.21) 82

Trot 2.86 55 (0.19, 0.39) 56

Canter 2.69 55 (0.36, 0.45) 51

gallop 2.45 55 (0.41, 0.49) 51

8. DISCUSSION AND CONCLUSION

In this paper, we introduce a fast and practical motion

synthesis algorithm for large number quadruped animals. The

core of this algorithm is to construct the speed map, which is a

set of speed-adjusted motions made from a single cyclic input

motion using a specialized IK solver. For quadruped animals,

four speed maps (walk, trot, canter, and gallop) are constructed

by the order of speed. Speed ranges of four speed maps are

overlapped to present various styles of motions for a same

speed parameter. Four speed maps are then connected as a

motion graph along with transition motions. Given the

trajectories representing the movement of characters, which are

obtained from external software or a manual process, the

algorithm synthesizes a long motion that makes the characters

move along a curve exactly while satisfying speed constraints.

Although our experiments prove that this algorithm can

synthesize a large number of characters in real time without

causing significant artifacts, there are a couple of limitations.

First, we assume that input trajectories always have a smooth

curve and no sharp turns. This is not a serious limitation, we

believe, because quadruped animals show smooth turns most of

the time except at special urgent events or after instructions

from a trainer. Second, our motion synthesis algorithm is a

purely kinematic method that does not consider the biophysical

and ethological information of animals. In order to improve the

motion quality, we need to employ useful information on

animal behaviors and the physical characteristics of various

animals that many veterinary and ethology scientists have

researched.

REFERENCES

[1] J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N.

Pollard,“Interactive control of avatars animated with

human motion data,” ACM Transactions on Graphics,

vol.21, no. 3, 2002, pp. 491–500.

[2] O. Arikan and D. A. Forsyth, “Interactive motion

generation from examples,” ACM Transactions on

Graphics, vol. 21, no. 3, 2002, pp. 483–490.

[3] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,”

ACM Transactions on Graphics, vol. 21, no. 3, 2002, pp.

473– 482.

[4] Y. Li, T. Wang, and H. Shum, “Motion texture: a two-

level statistical model for character motion synthesis,”

ACM Transactions on Graphics. vol. 21, no. 3, 2002, pp.

465–472.

[5] M. Brand and A. Hertzmann, “Style machines,” in

SIGGRAPH’00: Proc. of the 27th annual conference on

Computer graphics and interactive techniques, New York,

NY, USA, 2000, pp. 183–192.

[6] L. Kovar, J. Schreiner, and M. Gleicher, “Footskate

cleanup for motion capture editing,” in SCA ’02: Proc. of

the 2002 ACM SIGGRAPH/Eurographics symposium on

Computer animation, New York, NY, USA, 2002, pp. 97–

104

[7] D. Wright, B. Westenhofer, J. Berney, and S. Farrar,“The

visual effects of the chronicles of Narnia: the lion, the

witch and the wardrobe,” Comput. Entertain., vol. 4, no.

2, 2006, p. 4

[8] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive

dynamic walking of a quadruped robot on irregular

terrain based on biological concepts,” The International

Journal of Robotics Research, vol. 22, no. 3–4, 2003, pp.

187–202.

[9] M. Fujita and H. Kitano, “Development of an

autonomous quadruped robot for robot entertainment,”

Autonomous Robots, vol. 5, 1998, pp. 7–18.

[10] L. Favreau, L. Reveret, C. Depraz, and M. Cani, “Animal

gaits from video: comparative studies,” Graph. Models,

vol. 68, no. 2, 2006, pp. 212–234.

[11] M. Park, M. Choi, Y. Shinagawa, and S. Shin,

“Videoguided motion synthesis using example motions,”

ACM Transactions on Graphics., vol. 25, no. 4, 2006, pp.

1327–1359.

[12] M. H. Raibert and J. K. Hodgins, “Animation of dynamic

legged locomotion,” SIGGRAPH Comput. Graph., vol.

25, no. 4, 1991, pp. 349–358.

[13] N. Torkos and M. V. de Panne, “Footprint–based

quadruped motion synthesis,” in Proc. Of Graphics

Interface, 1998, pp. 151–160.

[14] K. Wampler and Z. Popovi´c, “Optimal gait and form for

animal locomotion,” ACM Transactions on Graphics, vol.

28, no. 3, 2009, pp. 1–8.

[15] L. Kovar and M. Gleicher, “Flexible automatic motion

blending with registration curves,” in Proc. of ACM

SIGGRAPH/Eurographics symposium on Computer

animation. 2003, pp. 214–224

[16] S. Park, H. Shin, and S. Shin, “On-line locomotion

generation based on motion blending,” in Proc. of ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation 2002, July 2002.

[17] L. Zhao and A. Safonova, “Achieving good connectivity

in motion graphs,” Graph. Models, vol. 71, no. 4, 2009,

pp. 139–152.

[18] J. J. Robilliard, T. Pfau, and A. M. Wilson, “Gait

characterization and classification in horses,” The Journal

of Experimental Biology, vol. 210, 2007, pp. 187–197.

[19] J. Lee and S. Shin, “A hierarchical approach to

interactive motion editing for human-like figures,” in

SIGGRAPH ’99: Proc. of the 26th annual conference on

Computer graphics and interactive techniques, New York,

NY, USA, 1999, pp. 39–48.

28 Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals

International Journal of Contents, Vol.7, No.3, Sep 2011

[20] M. Gleicher, “Motion path editing,” in Proc. Of 2001

ACM Symposium on Interactive 3D Graphics. ACM, Mar.

[21] S. Coros, A. Karpathy, B. Jones, L. Reveret, M. van de

Panne, “Locomotion Skills for Simulated Quadrupeds,”

in SIGGRAPH ’11: Proc. of the 38th annual conference

on Computer graphics and interactive techniques, New

York, NY, USA, 2011

[22] K. Yamane, Y. Ariki, J. Hodgins, “Animating non-

humanoid characters with human motion data,” in SCA

'10 Proc. of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation Eurographics

Association Aire-la-Ville, Switzerland, Switzerland

Mankyu Sung

He received the B.S and M.S in

computer science Chung Nam National

University, Korea in 1993, 1995

respectively and also received M.S. and

Ph.D. in computer science from

University of Wisconsin-Madison, USA

in 2005. Since then, he has been with the

Electronics and Telecommunication Research Institute (ETRI),

Korea. His main research interests include computer graphics,

computer animation and human-computer interaction.

