• 제목/요약/키워드: cross-section distance

검색결과 190건 처리시간 0.026초

골재의 형상 특성과 인공신경망에 기반한 콘크리트 압축강도 예측 연구 (Study on Prediction of Compressive Strength of Concrete based on Aggregate Shape Features and Artificial Neural Network)

  • 전준서;김홍섭;김창혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.135-140
    • /
    • 2021
  • 본 연구에서는 일반강도 범위 콘크리트의 단면에서 골재 형상의 특성을 추출하고 이를 인공신경망과 이미지 프로세싱 기술에 적용하여 콘크리트의 압축강도를 예측하였다. 이를 위하여 면적, 둘레, 길이 등과 같은 일반적인 골재 형상 특성과 함께 골재의 거리-각도 특징을 수치적으로 표현하고 물성치 예측에 활용하였다. 그 결과, 콘크리트 압축강도에 영향을 미치는 주요변수를 사용하지 않고 단면의 골재 형상 특성만을 사용하여 압축강도 예측이 가능하였으며, 인공신경망 알고리즘 구축을 통해 예측 강도와 실제 강도의 상대오차 4.43% 이내의 범위에서 콘크리트 압축강도를 예측할 수 있었다. 본 연구에서 도출된 결과를 기반으로 골재의 거리-각도 특징을 활용하여 콘크리트의 유동성, 휨·인장강도 등 다양한 특성을 예측도 가능할 것으로 판단된다.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

Analysis of Hydraulic Characteristics According to the Cross-Section Changes in Submerged Rigid Vegetation

  • Lee, Jeongheum;Jeong, Yeon-Myeong;Kim, Jun-Seok;Hur, Dong-Soo
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.326-339
    • /
    • 2022
  • Recently, not only Korea but also the world has been suffering from problems related to coastal erosion. The hard defense method has been primarily used as a countermeasure against erosion. However, this method is expensive and has environmental implications. Hence, interest in other alternative methods, such as the eco-friendly vegetation method, is increasing. In this study, we aim to analyze the hydraulic characteristic of submerged rigid vegetation according to the cross-sectional change through a hydraulic experiment and numerical simulation. From the hydraulic experiment, the reflection coefficient, transmission coefficient, and energy dissipation coefficient were analyzed according to the density, width, and multi-row arrangement of the vegetation zone. From numerical simulations, the flow field, vorticity distribution, turbulence distribution, and wave distribution around the vegetation zone were analyzed according to the crest depth, width, density, and multi-row arrangement distance of the vegetation zone. The hydraulic experiment results suggest that the transmission coefficient decreased as the density and width of the vegetation zone increased, and the multi-row arrangement condition did not affect the hydraulic characteristics significantly. Moreover, the numerical simulations showed that as the crest depth decreased, the width and density of vegetation increased along with vorticity and turbulence intensity, resulting in increased wave height attenuation performance. Additionally, there was no significant difference in vorticity, turbulence intensity, and wave height attenuation performance based on the multi-row arrangement distance. Overall, in the case of submerged rigid vegetation, the wave energy attenuation performance increased as the density and width of the vegetation zone increased and crest depth decreased. However, the multi-row arrangement condition did not affect the wave energy attenuation performance significantly.

평다이를 사용한 편심 압출가공에서의 비유동 영역의 형상과 굽힘 속도 분포에 관한 상계해석 (An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion)

  • 김진훈;진인태
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.177-185
    • /
    • 1998
  • The kinematically admissible veolcity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric lane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal one are determined by the minimization of the plastic work and that the curvature of the extruded products increase with the eccentricity.

  • PDF

일면지지식 Extradosed교의 계획 및 설계 (Plan IE Design Of Extradosed Bridge Supported by Single Plane Cables)

  • 이종대;이두화;권소진;김종수;손준상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.615-620
    • /
    • 2001
  • The aim of this paper is to open up a relatively new type in bridge engineering by introducing plan and design of extradosed bridge which is implemented in Sungnam-Janghowon T/K project. The topic encompasses parametric study including the behavior of the bridge relevant to the cable layout, the distance from pier table to the first cable's location, the height of pylon, the stiffness of cross section and wind vibration to ascertain sectional type of bridge and span length. For the purpose of the knowledge base presented here, the important feature of design is recommended such as modeling method, camber control, finite element analysis and heat hydration of pier table. We can verify the issue related to the characteristics of extradosed bridge as a result of study and design endeavor.

  • PDF

파이프 순환수의 수치해석 모사를 통한 수직 밀폐형 지중열교환기 단면의 열전달 효율 평가 (Numerical Evaluation of Heat Transfer un Ground Heat Exchanger Considering Flow through U-loop)

  • 길후정;이강자;이철호;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.583-587
    • /
    • 2009
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of the thickness of HDPE pipe and grout thermal properties, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

곡률 정보를 이용한 뇌의 3차원 모델 구성 (Reconstruction of 3D Brain Model using Curvature Information)

  • 안광옥;정현교
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.146-150
    • /
    • 2008
  • In order to study cortical properties in human, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Among many approaches, surface-based method that reconstructs a 3-D model from contour lines on cross-section images is widely used. The conventional method detects match points of contours using the minimum straight distance between any pair of contour points which lie on different contours. Then, it generates a triangle strip. In general, however, it might yield small mismatches between contours in case of brain due to complex anatomical structures. In this paper, therefore, we present an improved method for tilting operation that uses the curvature values calculated from surface information. The usefulness of the proposed method has been verified using brain image.

상계해법에 의한 압출가공의 비틀림 해석 (An Upper Bound Analysis for the Twisting Phenomenon of Extrusion)

  • 김한봉;진인태
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.340-346
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of the extruded products with elliptical shapes from round billet. The twisting of extruded product is caused by the lin-early increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product in creases with the die twisting angle, the aspect ratio of product the friction condition, the reduction of area, and decreases with the die length.

  • PDF

변단면 슬립폼 공법 적용을 위한 콘크리트의 응결 특성 비교 (Comparison of Concrete Setting Properties for the Application of Tapered Slip-Form method)

  • 송용순;양우용;정길수;서영화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.459-460
    • /
    • 2010
  • 이순신 대교 변단면 주탑에 압송관을 이용한 슬립폼 공법을 적용하기 위해서는 공사기간 중 점차 추워지는 날씨와 압송거리 증가에 따른 콘크리트 초기응결특성 변화에 대한 고려를 하지 않으면 안 된다. 또한 급격한 변단면 구간이나 가로보 연결부 등에서 의도적으로 속도를 지연시키기 위한 계획적인 초결시간 변화가 가능해야 한다. 이 연구에서는 OPC, S/C, OPC와 S/C 혼합 및 저발열 시멘트를 이용한 배합시험을 통해 시멘트의 종류, 혼화제, 대기온도에 따른 콘크리트 초기응력특성을 관찰하였다.

  • PDF

평다이를 사용한 편심압출가공에서의 비유동영역의 형상과 굽힘속도분포에 관한 상계해석 (An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion)

  • 김진훈;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.250-253
    • /
    • 1998
  • The kinematically admissible velocity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric plane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal zone are determined by the minimization of the plastic work and that the curvature of the extruded products increases with the eccentricity.

  • PDF