• Title/Summary/Keyword: cross-over model

Search Result 425, Processing Time 0.026 seconds

Evaluation of short-term water demand forecasting using ensemble model (앙상블 모형을 이용한 단기 용수사용량 예측의 적용성 평가)

  • So, Byung-Jin;Kwon, Hyun-Han;Gu, Ja-Young;Na, Bong-Kil;Kim, Byung-Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.

Longitudinal Relationship between Overuse/Addictive Use of Mobile Phones and Depression in Adolescents: Adapting the Autoregressive Cross-Lagged Model and Multiple Group Analysis across Gender (자기회귀교차지연모형을 이용한 청소년의 휴대폰 과다사용 및 중독적 사용과 우울의 종단적 관계 검증: 성별 간 다집단 분석)

  • Jun, Sangmin
    • Human Ecology Research
    • /
    • v.52 no.3
    • /
    • pp.301-312
    • /
    • 2014
  • The purpose of this study was to examine whether a temporal relationship would develop between the overuse/addictive use of mobile phones and depression in adolescents. For this study, we used the 4-year longitudinal data (2004-2007, Study 1, which measured the overuse of mobile phones and depression) and the 2-year longitudinal data (2010-2011, Study 2, which measured the addictive use of mobile phones and depression) of the Korea Youth Panel study. In addition, the study explored gender differences with respect to the above mentioned relationship. Autoregressive cross-lagged modeling was carried out, along with a multiple group analysis across genders. The findings showed that the overuse/addictive use of mobile phones and depression in adolescents had a significant effect on the future selves of these adolescents over time. Moreover, the overuse/addictive use of mobile phones had a significant influence on subsequent depression, rather than vice versa. This means that as the overuse/addictive use of mobile phones by adolescents increases, their depression intensifies later on; however, as depression among adolescents intensifies, the overuse/addictive use of mobile phones by adolescents' does not increase. Further, the study showed there were significant gender differences in the longitudinal relationship between the overuse/addictive use of mobile phones and depression. Study 1 shows that, prior to the release of smartphones, the overuse of mobile phones had a definite effect on the depression of only males. However, Study 2 shows that, after the release of smartphones, the effect of the addictive use of mobile phones on depression in females was greater than that in males.

Performance prediction of horizontal axis marine current turbines

  • Bal, Sakir;Atlar, Mehmet;Usar, Deniz
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.125-138
    • /
    • 2015
  • In this study, hydrodynamic performance of a 400 mm diameter horizontal axis marine current turbine model was tested in a cavitation tunnel with 1.21 m x 0.8 m cross-section for over a range of tip speed ratios. Torque and thrust data, as well as cavitation visualizations, for certain operating conditions were acquired. Experimental results indicated that the turbine can be exposed to significant amount of sheet and cloud cavitation over the blades along with vortex cavitation at the blade tips. Inception and distribution of cavitation along the blades of the model turbine were then modelled numerically for design operating conditions using a vortex lattice method. The method was also applied to a turbine tested previously and obtained results were compared with the data available. The comparison between simulation results and experimental data showed a slight difference in terms of span-wise extent of the cavitation region. The cloud and tip vortex cavity observed in experiments cannot be modelled due to the fact that the VLM lacks the ability to predict such types of cavitation. Notwithstanding, the use of such prediction methods can provide a reasonably accurate approach to estimate, therefore take the hydrodynamic effects of cavitation into account in design and analysis of marine current turbines.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

Prediction of box office using data mining (데이터마이닝을 이용한 박스오피스 예측)

  • Jeon, Seonghyeon;Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1257-1270
    • /
    • 2016
  • This study deals with the prediction of the total number of movie audiences as a measure for the box office. Prediction is performed by classification techniques of data mining such as decision tree, multilayer perceptron(MLP) neural network model, multinomial logit model, and support vector machine over time such as before movie release, release day, after release one week, and after release two weeks. Predictors used are: online word-of-mouth(OWOM) variables such as the portal movie rating, the number of the portal movie rater, and blog; in addition, other variables include showing the inherent properties of the film (such as nationality, grade, release month, release season, directors, actors, distributors, the number of audiences, and screens). When using 10-fold cross validation technique, the accuracy of the neural network model showed more than 90 % higher predictability before movie release. In addition, it can be seen that the accuracy of the prediction increases by adding estimates of the final OWOM variables as predictors.

A variational asymptotic approach for thermoelastic analysis of composite beams

  • Wang, Qi;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.93-123
    • /
    • 2014
  • A variational asymptotic composite beam model has been developed for thermoelastic analysis. Composite beams, including sandwich structure and laminates, under different boundary conditions are examined. Previously developed beam model, which is based on variational-asymptotic method, is extended to incorporate temperature-dependent materials experiencing large temperature changes. The recovery relations have been derived so that the temperatures, heat fluxes, stresses, and strains can be recovered over the cross-section. The present theory is implemented into the computer program VABS (Variational Asymptotic Beam Sectional analysis). Numerical results are compared with the 3D analysis for the purpose of demonstrating advantages of the present theory and use of VABS.

A Study on the AC Arc Model of High Pressure Mercury Discharge (고압 수은방전의 교류 아아크 모델에 관한 연구)

  • Chee, Chol-Kon;Kim, Hoon;Lee, Sang-Woo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.655-659
    • /
    • 1987
  • This study presents a model of the electrical characteristics of the high-pressure mercury vapour arc discharge. Energy balance equation per unit volume of the arc tube is converted into the one per unit length by assuming the parabolic radial temperature distribution and integrating over the cross-section of the tube. Using this energy balance equation, together with the circuit equation and Ohm's law, the arc voltage and current variation for 1 cycle is numerically calculated and a good result is obtained. A simple method to calculate the axis temperature of the arc tube and the radiation output is also presented.

  • PDF

Interpretation of shallow geological structure by applying GIS to geophysical data (물리탐사자료의 GIS 복합처리에 의한 천부지질구조 해석)

  • 송성호;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.123-126
    • /
    • 1998
  • We have conducted surface electrical resistivity surveys along with the electrical logging at Bookil-Myun, Chungwon-Goon, Choongchungbuk-Do to determine the depths of basement and water table, and for the purpose of preparing the basic input data for hydrogeologic model combined with GIS. A twenty lines of dipole-dipole array survey and a twenty-five stations of resistivity sounding were performed and ten holes were employed for electrical logging to cross check the surface data. A combined interpretation gave the quantitative information of the shallow geologic structure over the area and we constructed layers using the grid analysis of Arc/info. The constructed layers were turned out to be similar to the geologic structure confirmed from the drilling data and we concluded that the methodology adopted in this study would be applicable to hydrogeologic model setup as a tool of providing the basic input data.

  • PDF

Prediction of Thermal Decomposition Temperature of Polymers Using QSPR Methods

  • Ajloo, Davood;Sharifian, Ali;Behniafar, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2009-2016
    • /
    • 2008
  • The relationship between thermal decomposition temperature and structure of a new data set of eighty monomers of different polymers were studied by multiple linear regression (MLR). The stepwise method was used in order to variable selection. The best descriptors were selected from over 1400 descriptors including; topological, geometrical, electronic and hybrid descriptors. The effect of number of descriptors on the correlation coefficient (R) and F-ratio were considered. Two models were suggested, one model having four descriptors ($R^2$ = 0.894, $Q^2_{cv}$ = 0.900, F = 172.1) and other model involving 13 descriptors ($R^2$ = 0.956, $Q^2_{cv}$ = 0.956, F = 125.4).