• Title/Summary/Keyword: cross obstacle

Search Result 57, Processing Time 0.026 seconds

Hybrid Neural Network Based BGA Solder Joint Inspection Using Digital Tomosynthesis (하이브리드 신경회로망을 이용한 디지털 단층 영상의 BGA 검사)

  • Ko, Kuk-Won;Cho, Hyung-Suck;Kim, Jong-Hyeong;Kim, Hyung-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.246-254
    • /
    • 2001
  • In this paper, we described an approach to the automation of visual inspection of BGA solder joint defects of surface mounted components on printed circuit board by using neural network. Inherently, the BGA solder joints are located underneath its own package body, and this induces a difficulty of taking good image of the solder joints by using conventional imaging systems. To acquire the cross-sectional image of BGA sol-der joint, X-ray cross-sectional imaging method such as laminography and digital tomosynthesis has been cur-rently utilized. However, the cross-sectional image obtained by using laminography or DT methods, has inher-ent blurring effect and artifact. This problem has been a major obstacle to extract suitable features for classifi-cation. To solve this problem, a neural network based classification method is proposed int his paper. The per-formance of the proposed approach is tested on numerous samples of printed circuit boards and compared with that of human inspector. Experimental results reveal that the method provides satisfactory perform-ance and practical usefulness in BGA solder joint inspection.

  • PDF

Design and development of an automated all-terrain wheeled robot

  • Pradhan, Debesh;Sen, Jishnu;Hui, Nirmal Baran
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.21-39
    • /
    • 2014
  • Due to the rapid progress in the field of robotics, it is a high time to concentrate on the development of a robot that can manoeuvre in all type of landscapes, ascend and descend stairs and sloping surfaces autonomously. This paper presents details of a prototype robot which can navigate in very rough terrain, ascend and descend staircase as well as sloping surface and cross ditches. The robot is made up of six differentially steered wheels and some passive mechanism, making it suitable to cross long ditches and landscape undulation. Static stability of the developed robot have been carried out analytically and navigation capability of the robot is observed through simulation in different environment, separately. Description of embedded system of the robot has also been presented and experimental validation has been made along with some details on obstacle avoidance. Finally the limitations of the robot have been explored with their possible reasons.

Development of IoT System Based on Context Awareness to Assist the Visually Impaired

  • Song, Mi-Hwa
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 2021
  • As the number of visually impaired people steadily increases, interest in independent walking is also increasing. However, there are various inconveniences in the independent walking of the visually impaired at present, reducing the quality of life of the visually impaired. The white cane, which is an existing walking aid for the visually impaired, has difficulty in recognizing upper obstacles and obstacles outside the effective distance. In addition, it is inconvenient to cross the street because the sound signal to help the visually impaired cross the crosswalk is lacking or damaged. These factors make it difficult for the visually impaired to walk independently. Therefore, we propose the design of an embedded system that provides traffic light recognition through object recognition technology, voice guidance using TTS, and upper obstacle recognition through ultrasonic sensors so that blind people can realize safe and high-quality independent walking.

Static Obstacle Crossing Locomotion of a Four-Legged Walking Machine (4-족 보행 로봇의 정역학적 장애물 횡단 보행에 관한 연구)

  • Park, Sung Ho;Chung, Gwang Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.152-162
    • /
    • 1996
  • A four-legged Walking Machine can move on the plain terrain with mobility and stability and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra time to cross those obstacles and the stability should be considered during motion. The main objective is the study a Quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a Quadruped can move on any mixed rough terrain as 4-legged terrestrial vertebrates move. Each leg of a Quadruped has a limited walk space called a walking volume and this is very important to deter- mine the crossing capability in a static analysis. A Quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain information from scanner and finally can move with mobility and stability.

  • PDF

A Study on the Radar Data Analysis of VFR Aircraft at an Airport (특정 공항에서의 VFR 항공기 레이다 항적자료 분석 연구)

  • Lee, KyungHan;Kim, DoHyun;Shin, DaiWon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.37-43
    • /
    • 2019
  • Obstacle limitation surfaces are imaginary space surfaces that must be clear of obstacles for the aircraft to safely take off and land on the aerodrome. These surfaces are closely related to the safety of the VFR aircraft, which require a pilot to be able to see outside the cockpit, to control the aircraft's altitude, navigate, and avoid obstacles and other aircraft. The Republic of Korea, which has a lot of restrictions on the use of airspace, cannot provide a rich operating environment for VFR aircraft. Under these circumstances, safer operation will not be guaranteed if additional factors that directly or indirectly affect existing VFR routes, such as drone delivery services. This study analyzes and models the track distribution of each VFR section based on radar track data around a specific airport. Through this study, we estimate the three-dimensional space for VFR aircraft and provide the data for future research such as airspace analysis of VFR corridors and correlation with obstacle limitation surfaces.

The Effects of Treadmill Obstacle-Stepping on Physical Activity in Ambulatory Patients After Stroke

  • Kim, Jeong-soo;Jeong, Yeon-gyu
    • Physical Therapy Korea
    • /
    • v.22 no.4
    • /
    • pp.71-78
    • /
    • 2015
  • Previous studies have investigated stepping over obstacles in treadmill walking training (TWT-OS) and treadmill walking training (TWT) alone for walking capacity not considering real physical activity. As such, we investigated the effects of TWT-OS on physical activity and changes in different levels of physical activity based on community ambulation in stroke patients. Thirty subjects were randomly assigned to either the experimental group or the control group, with 15 and 15 subjects, respectively. However, one subject from the control group was excluded because of inadequate treatment sessions. All subjects underwent routine physical therapy in the form of treadmill walking. The subjects in the experimental group underwent simultaneous training in obstacle-stepping while walking on the treadmill for 30 min/day, five times/week, for four weeks. Subjects were given a three-axis accelerometer to wear at the hip on a belt for one-week pre- and post-training physical activity. Step counts for seven days, average daily step counts, and the average of minutes spent in sedentary, light, and above moderate activity were chosen as outcome measures of physical activity. No significant differences between the groups were found in terms of step counts for seven days, average daily activity, or daily activity spent at sedentary levels after four-week interventions. However, the average daily activity spent at light levels (-42.60 min vs. -6.71 min) was significantly lower in the experimental group than in the controls. Conversely, average daily activity spent at above moderate levels was higher (19.86 min vs. 11.07 min) (p<.05) after adjusting for each baseline value. Significant pre- and post-training differences were found in all variables of the experimental group (p<.05). Thus, TWT-OS could improve physical levels above moderate activity as a community-oriented task more than simple repetitive waking on a treadmill, and it could provide an opportunity for patients ambulatory after stroke to participate in the community again.

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Multi-channel Speech Enhancement Using Blind Source Separation and Cross-channel Wiener Filtering

  • Jang, Gil-Jin;Choi, Chang-Kyu;Lee, Yong-Beom;Kim, Jeong-Su;Kim, Sang-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.56-67
    • /
    • 2004
  • Despite abundant research outcomes of blind source separation (BSS) in many types of simulated environments, their performances are still not satisfactory to be applied to the real environments. The major obstacle may seem the finite filter length of the assumed mixing model and the nonlinear sensor noises. This paper presents a two-step speech enhancement method with multiple microphone inputs. The first step performs a frequency-domain BSS algorithm to produce multiple outputs without any prior knowledge of the mixed source signals. The second step further removes the remaining cross-channel interference by a spectral cancellation approach using a probabilistic source absence/presence detection technique. The desired primary source is detected every frame of the signal, and the secondary source is estimated in the power spectral domain using the other BSS output as a reference interfering source. Then the estimated secondary source is subtracted to reduce the cross-channel interference. Our experimental results show good separation enhancement performances on the real recordings of speech and music signals compared to the conventional BSS methods.

Comparison of Map Display Styles of Vehicle Navigation System on Human Factors (자동차 항법장치의 화면표시형태에 대한 인간공학적 비교)

  • Jeong, Peom-Jin;Paek, Sung-Lyeol;Kim, Ki-Peom;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.49-59
    • /
    • 1995
  • The vehicle navigation system is developed for helping driver to retrieve driving information more easily and fastly. Navigation System informs driver many pieces of driving information - roadway structure and system, on-line traffic condition, the position of vehicle, route guidance, destination and other information service. As the style of information is diverse and the amount of information is large, driver may have mental and visual overload. The display of information can disturb the driver's attention and this can cause accidents. This state is caused by the defect of human-machine interactions. When the navigation system is designed, human factors - cognitive, judgment, operating - must be considered. The display style must be designed simply and easily, not to be obstacle of human -machine interface. In this study, outside-in view display style and inside-out view display style are compared each other. Two factors are measured. One is cognitive factor-time of cognition on information that is displayed by screen display, cognition error rate. The other is image of screen display - subject's feeling about several styles of display, degree of subject's preference. The prototype of roadway is four kinds - Cross, T-cross, Y-cross and O-cross. Roadway display for test is taken from paper maps. Traffic condition display style, vehicle position display style and route guidance display style are taken from current display style. Traffic condition display style is symbol. Vehicle position display style and route guidance display style are described as color and symbol. The test on screen display is implemented doing given tasks. Then the test is analyzed statistically, The result of test analysis gives the guideline to the designer for the map display of the vehicle navigation system.

  • PDF

Influencing Factors of Cross Border E-commerce Export: Focusing on Product Characteristic (전자상거래 수출 영향요인 연구: 품목별 특성을 중심으로)

  • Jin-Kyu Kim;Yoon Lee
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.199-216
    • /
    • 2023
  • Rapidly growing cross-border e-commerce exhibits different characteristics from traditional trade. This paper empirically investigates influencing factors of CBEC trade between Korea and foreign countries including product characteristics, such as product type and unit price. We construct panel data based on Korea's e-commerce export data by country and product and analyze it by the OLS, fixed effect, and random effect estimation. Our main findings can be summarized as follows: geographical distance still remained as an obstacle to the CBEC trade, product unit price, and durable consumer goods dummy variables positively affect e-commerce export of Korea, and capital goods dummy variables negatively affect e-commerce export. This research can help us understand the characteristics of cross-border e-commerce and can be used as a basis for future research using product-specific data.