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Abstract

Despite abundant research outcomes of blind source separation (BSS) in many types of simulated environments, their 
performances are still not satisfactory to be applied to the real environments. The major obstacle may seem the finite filter 
length of the assumed mixing model and the nonlinear sensor noises. This paper presents a two-step speech enhancement 
method with multiple microphone inputs. The first step performs a frequency-domain BSS algorithm to produce multiple 
outputs without any prior knowledge of the mixed source signals. The second step further removes the remaining cross- 
channel interference by a spectral cancellation approach using a probabilistic source absence/presence detection technique. 
The desired primary source is detected every frame of the signal, and the secondary source is estimated in the power 
spectral domain using the other BSS output as a reference interfering source. Then the estimated secondary source is 
subtracted to reduce the cross-channel interference. Our experimental results show good separation enhancement 
performances on the real recordings of speech and music signals compared to the conventional BSS methods.

Keywords: Blind source separation (BSS), Spectral subtraction, Wiener filtering, Adaptive noise cancellation (ANC).

I ・ Introduction

Separation of multiple sign시s from their super­
position recorded at several sensors is an important 
problem that shows up in a variety of applications 
such as communications, biomedical and speech 
processing. The class of separation methods that 
require no source sign이 information except the number 
of mixed sources is often referred to blind source 
separation (BSS)[1], In real recording situations with 
multiple microphones, each source signal spreads in 
all directions and reaches each microphone through 
“direct paths” and ''reverberant paths.,, The observed 
signal by the j th microphone input is expressed as

N co N ‘I、
•W=£ »#(小(i)+项)=力如皿)+项)⑴

1=1 T=0 j=l
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where sjz) is the i th source signal, N is the number 
of sources, Xj (，)is the observed signal, and (，)is 
the transfer function from source i to sensor j. The 
noise term 七(t) refers to the nonlinear distortions 
due to the characteristics of the recording devices. 
The assumption that the sources never move often 
fails due to the dynamic nature of the acoustic objects 
[1]. Moreover the practical systems should set a limit 
on the length of an impulse response, and the limited 
length is often a major performance bottleneck in 
realistic situations[2].

This paper proposes a post-processing technique for 
eliminating the remaining cross-channel interference 
at the BSS output. Our method is motivated by 
adaptive noise cancellation (ANC)[3]. The proposed 
method considers one BSS output as noisy signal and 
the other as reference noise source, and performs 
cancellation in the power spectral domain as the 
conventional spectral subtraction methods do[4]. The 
advantage of the power spectral subtraction is the 
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effective absorption of small amount of mismatch 
between the actual filter and the estimated one, and 
the generation of cleanly denoised signals. The 
disadvantage is the introduction of the musical noises 
due to the below-zero spectral components as a result 
of the subtraction. With the help of source absence/ 
presence detection prior to the subtraction, we reduce 
the error of the cancellation factor estimation and 
hence minimize the musical noises. Experimental 
results show that our proposed method has a superior 
performance to the conventional spectral subtraction 
on the output of the frequency-domain BSS method in 
realistic conditions.

III. Frequency-domain Blind Source 
Separation

The frequency-domain blind source separation 
algorithm for convolutive mixtures is to transform the 
original time-domain filtering architecture into an 
instantaneous BSS problem in the frequency domain 
[5]. Using short time F이irier transform, （1） is 
rewritten as

X（©/） = H（企）S（©/） + N（企/） , （2）

where a? is a frequency index, H（如 is the NxN 

square mixing matrix, 乂3" = [%3小项即小顷丄財）了 

and *丿（皿" = £1二腥너2物『疗勺（& + 时 , representing the 

DFT of the frame of size T with shift length |_r/2j 
starting at 기（〃-1） + 1 where |_-J is the 
flooring operator, and corresponding expressions 
apply for S（c/） and N （任）双）…in our paper, we 
denote lowercase letters with argument t for the time­
series, and capital letters with argument o）and n for 
the Fourier transform at frequency（o for the n th 
frame. When the letters are boldfaced, they are 
column vectors whose components are accompanying 
the same arguments. The unmixing process can be 
formulated in a frequency bin o）:

Y（＜w/） = W3）X（69/） ⑶

where Nx\ vector is an estimate of the
original source disregarding the effect of the 
noise N （企/） . The convolution operation in the time 
domain corresponds to the element-wise complex 
multiplication in the frequency domain. The 
instantaneous ICA algorithm we use is the non- 
holonomic information maximization [6]:

AW oc g （Y）- diag（0 （Y）Y” ）] , （4）

where H is the Hermitian transpose, and the polar 
nonlinear function o（Y）is component-wisely defined 
as °（K）=匕 / [7]. A disadvantage of this decomposi­
tion is that there arises the permutation problem in 
each independent frequency bin. The problem is 
solved by the time-domain spectral smoothing[5].

S1+S2
Fig. 0. The separability of the ordinary BSS algorithm. Left two, signals are sensor inputs, and right two signals are BSS outputs. The 
original so니rces are rock music and speech signals[8]. There exists no speech signal in the ellipse-marked parts but still remains a 
small amount of rock music signal.
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111. Adaptive Cross-Channel Interference 
Cancellation

3.1. Cross-Channel Interference Detection
Figure 1 illustrates inputs and outputs of the 

ordinary BSS. The output signals still contain cross­
channel interference that is audible and identifiable by 
human listeners. However, in the first output, if we 
assume that the speech signal is present only in the 
region en이osed by rectangles (call them active 
blocks), apparently the region enclosed by ellipses 
(inactive blocks) contains the music signal only. The 
existence of the cross-channel interference can be 
described by the presence of the primary source. 
When the primary source is present, it often coexists 
with the secondary source, and the interference occurs. 
The presence probability of the primary source is 
modeled by complex Gaussian distributions[9], and 
used in properly estimating the interference can­
cellation factors regarding the cross-channel output as a 
reference noise source.

For each frame of the i th BSS output, two 
hypotheses HiQ and are given which 
respectively indicate the absence and presence of the 
primary source:

亿,0 : W),匕

乩,1 : V企,匕.⑷n)=(爲3)晃3,w)+£详j(哥(叫侦,*), 

사g 勺•(时=EH 風面)hkj S)

(5)

where Wik (zy) is (z, k) -component of the unmixing 
matrix W (fo) , and H财(时 is (k, j) -component of the 
mixing matrix H(©). Although G- (©) = 1, (©) = 0
for i j when ideal separation is obtained, it is not 
always possible due to the nature of the instantaneous 
ICA algorithm and the additive noises in the real 
recordings. The hypothesis 0 means that the primary 
source is absent in the i th BSS output at frame n , and 

means that the primary source as well as the 
secondary sources coexist, that is, interference occurs. 
Conditioned on a set of all the frequency components for 

frame n ,匕(刀)=｛约(a小2)"二 1,K ,7), the 

absence and presence probabilities are given by
source

（„ iyz兩•（깨H”成Se）

以 '시 '㈣、厢（째/料»（%.,］）

（6）

where 〃(也())is a priori probability for source i 
absence (inactive frames), and =1 一〃(/匕。) 

is that of source z presence (active frames). Assuming 
the probabilistic independence among the frequency 
components,

川(이%”)=屮"이%) . ⑺

Then source absence probability becomes 

p(m,o”S))=
스*3,쌔

.(8)

The posterior probability of Ht x is obviously source 
presence probability indicating the amount of cross­
channel interference at the i th BSS output, which is 
easily computed by p(H, J'S)) = - ，(砂)-
In the following sections, we explain the cancellation 
of the cross-channel interference and the statistical 
models for the component densities p (匕(皿 h)|h/>2 ).

3O2. Cross-Channel Interference Cancellation
Adaptive noise cancellation (ANC) is one of the 

powerful techniques when a reference noise source is 
given. Because the assumed mixing model of ANC is 
a linear FIR filter architecture, direct application of 
ANC may not model the mismatch of the linear filter 
to the realistic conditions nonlinearities due to the 
sensor noise and the infinite filter length. Therefore 
we add a nonlinear feature adopted in conventional 
spectral subtraction [4]:

3 =』* (®, - «, z (®)|y,. (®, ")「)

ZUi = Z*(£財) （9）
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where 匕(皿〃)is the 'th component of the BSS 
output Y(<y,n) , by (<y) is the cross-channel inter­
ference cancellation factor for frequency o from 
channel j to z . A positive constant a is first 
introduced by Weiss [10] to incorporate the statistical 
property of the power spectrum to enhance the 
spectral subtraction perfbnnance. The value of a is 
typically between 1 and 2. % is also a positive 
constant and usually called over-subtraction factor 
[11], and used to suppress residual musical noise at 
the subtracted spectrum. In our work, ai is assigned a 
value according to the source absence probability. The 
spectral flooring function f (-) is defined by [11]

/(x) = < (10)
x if xZ £ 

if X < £

where the positive constant s sets a lowerbound on 
the spectrum value and prevents below-zero power 
spectrum. The nonlinear operator /(•) suppresses the 
remaining errors of the BSS, but may introduce 
musical noises as most of spectral subtraction 
techniques suffer. The subtraction in (9) can be 
expressed in another form, such that

|c/; = Hi (<»)|^ , (11)

where Hi (a, is called Wiener filter and approxi­
mated by (9) as

m(co, 쌔"—%. £ (쌔% s, 冲" 
__________ w____________ 

柘 s, 쌔"

丿,(12)

3.3. Probability Model and Cancellation Factor 
Update

If the subtraction in (9) successfully removes the 
cross-channel interference, the spectral magnitude 
Ui would be zero in inactive frames. We 
evaluate the posterior probability of 匕(a，/) given 
each hypothesis by the complex Gaussian distributions

*3,쌔)으 p(mS，쌔m)°c exp _ ；으満-

(13)

where 人用(a?) is the variance of the subtracted 
frames. When 初=1, it is the variance of the primary 
source, and when m = 0 it is of the secondary source. 
The variance A. m (rw) is updated at every frame by the 
following probabilistic averaging fbrmu価：

u {1-〃厲伉,』0시如 +，7况乩시匕(〃))03，”)|2

(14)

where the positive constant 〃人 defines the adaptation 
frame rate. The value of 孩 is empirically determined. 
The primary source signal is expected to be at least 
“emphasized" by BSS. Hence we assume that the 
amplitude of the primary source should be greater 
than that of the interfering one, which is primary in 
the other BSS output channel. While updating the 
model parameters, it might happen that the variance 
of the enhanced source,為](©), becomes smaller 
than 人(J©) . Such cases are undesirable, so we 
explicitly change two models when

. (15)

The next step is updating the interference 
cancellation factors. First we compute the difference 
between the spectral magnitude of 匕 and Yj at 
frequency o)and frame n :

d (»,«) = |匕站(0)加(以)| . (16)

We define a cost function J by y -norm of the 
difference multiplied by the frame probability:

J(«, n) = p (//■ 0 («))■ |(J, (w, «)|V • (17)

The gradient-descent learning rules for at frame n is 
사，" x -씌우牛 血,0附))•"，끼"시 . 珈，〃)

物*끼 一 O
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According to the earlier findings about the statistical 
property of natural sounds, v is set to be less than 1 
for highly kurtotic speech signals [12], greater than 1 
for music sign이s [13], and 2 for pure Gaussian 
random noises. In the case of the speech signal 
mixtures, we assign v = 0.8 fbr p(H,〔匕(刀))，and 
v = 1.5 fbr J匕(")to fit to the distribution of 

the musical noises that are frequently observed in the 
inactive frames as a result of spectral subtraction.

3.4. Stepwise Description of the Proposed Algorithm
We design an online, multi-channel source separation 

algorithm by combining the frequency-domain BSS 
algorithm and the adaptation formulas presented in 
the preceding sections. The whole procedure is 
summarized as the following steps:

In이」tS： - N mixture signals at frequency
co = and frame n = 1,...,# frames
po )・ prior probability of the null hypothesis

Intermediate outputs (to be adapted online)：

At each frequency , for source (or channel) i and j
W (&?) - demixing matrix
by (©) - interference cancellation factor
人抑 (a)),시a>) - variances of the sources for
Hypotheses 0 and 1

Final outputs： interference-cancelled results
at each frequency o)and frame n

Procedures：

1. Take some initial values fbr W(©) , by (©), and
A；o 3)

2. For each frame n,
2.1 For each frequency at

2.1.1 Compute BSS outputs
Y(6»,M)= W(®)X((O,M)

2.1.2 Update BSS separation matrix
AWoc^(Y)YH - diag (伊(Y))]

2.1.3 Eliminate cross-channel interference and

Fig. 0. Block diagram of the whole separation algorithm. (1) The input microphone recordings are initially separated by 
FD-BSS algorithm. In the resultant signals, one primary source and the other secondary source signals are identified at 
each output. (2) Source presence probabilities (SPPs) are comp니ted for each frame of the FD-BSS outputs. (3) The 
proposed method (ACCIC; adaptive cross-channel interference cancellation) is performed on a single frame basis, that 
is, either buffering or batch processing is required.
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generate output by current estimates
=f |*0,씨* 如(쌔界n시"]

l 用 丿

2.1.4 Compute posterior probability of the BSS
outputs

p", 씨死/exp 삇쁘

2.2 Compute source absence probability

/屈 MS)* 1+盲曲
顶瓦沪J 兩函瓦0

2.3 For each of frame n, compute

禺 3, 〃)=" 3, 쌔 一 B归 by (쌔% S，小

2.4 Update interference-canceling factor

啊 3) cc piH^Yi («))• |^- (co, n^1 ■ YJ (cd, m)

2.5 Update variances

，編 <=卜少邛也시圣(새知 +〃 "S시4("沮-3, ”尸

2.6 Change the values of the variances when

2財"〉二匂⑷

3. Repeat all steps in 2 until the end of input.

Whenever a frame is entered, steps 2.1 through 2.6 
are performed and their outputs Ui (<y,w) are 
generated with no delay. The separated outputs are 
transformed to the time domain by performing inverse 
Fourier transform and overlap-addition on Ui . 
Since the algorithm is completely online and adaptive, 
applications requiring real-time responses can adopt 
the proposed method. The whole procedure is illustrated 
in Figure 2. For compactness purpose, we refer to the 
frequency-domain blind source separation algorithm as 
FD-BSS, and the proposed algorithm as ACCIC 
(adaptive cross-channel interference cancellation) in the 
rest of the paper.

IV. Evaluation

We conducted experiments designed to demonstrate 
the performance of the proposed method. To show the 
validity of the proposed method, we measured the 
separation quality improvement of ACCIC for the 
FD-BSS outputs. We compared the results with those 
of the ordinary spectral subtraction method and 
showed the superior improvements.

4.1 ・ Data
The data are recorded in a normal office room.

100cm

100cm

Fig. 0. Recording setup. Two loudspeakers are placed 50 cm apart from each other. One speaker 
plays primary source signal and the other plays secondary source simultaneously. Two 
omnidirectional microphones are placed 50 cm apart from each other and 100 cm from the speakers. 
They collect the convolutively mixed audio sounds： We assume that the so니rce signal whose recorded 
amplitude is larger in microphone 1than in microphone 2 is the primary source, and the other source 
is secondary so니rce. The recording was done in a normal office room.
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Table 1. So니rce signals that are used in the experiment. A female speech signal *f1' and a male speech 'ml' is played at 'speaker 1' in our recording 
config니ration shown in Figure 3. At 'speaker 2', 5 different sounds of male and female speech, and 3 musics with different characteristics, are played.

Symbol Type Description

Played at "speaker 1'
'fl' Female speech Reading a given text in a laboratory

'ml' Male speech Reading a given text in a laboratory

'gl' Pop song Smooth and calm; a background singer, and two people interchangeably crooning

'g2， Rock music Loud; a male vocal vigorously singing

Played at "speaker 2' Instrumental music Very soft: composed of slow piano playing only

Female speech Reading a given text in a laboratory

im2, Male speech Reading a given text in a laboratory

Microphones and speakers are placed in a rectangular 
arrangement as shown in Figure 3. Two loudspeakers 

that are placed 50 cm apart from each other play the 
different sources and two omnidirectional 

microphones placed 100 cm apart simultaneously 
record the mixed source signals at a sampling rate of 
16 kHz. The distance between microphones is 50 cm, 
and between the speakers is 50 cm. The left speaker 
plays one of male and female speech signals, and the 
right speaker plays one of 5 different sounds at a time. 
The speech signals are a series of full sentence 
utterances, and the music signals are a pop song, a 
rock with vocal sounds, and a soft instrumental music. 
See Table 1 for details. The length of the frame for 
FD-BSS was 512 samples, and the same length is 
used for the cross-channel interference cancellation.

4.2. Quality Measures and Alternative Method 
Description

The separation results are measured by signal to 
interference ratio (SIR), which we define the 
logarithm of the ratio of the primary source power to 
the secondary source power in a channel: 

SlR(wJ[dB] = 101 三 1 이。gio
旦+20）-已2（给）

E血）_

where Ex (ui) and E2 ) are the average power of 
primary and secondary source in signal ui , and 
E1+2 (uz) is the average power when cross­
interference occurs. When the two sources are 
uncorrelated, we can approximate Ex «£島 - E2 . 
Because the exact signal is unable to obtain, we use 

the source absence and presence probabilities to 
evaluate the source powers:

.\ £〃P(Lo| 匕(")X 心)2) 
Ml…財，시肅)

Z"血,齿(以“伺) 

珏血i以比命)

where 烦is the average sample power of 

frame n. “
To show the benefit of the proposed ACCIC, we 

adopt conventional spectral subtraction method [4] as 
an alternative. This is simply performing spectral 
subtraction after FD-BSS, in Step 3 of Figure 2, 
instead of ACCIC. We use the source presence 
probabilities computed during the execution of 
ACCIC, represented by solid lines in the lower-right 
part of Figure 2, in estimating the average noise 
spectra. The implementation details are as follows:

Inputs:必(©/) - N BSS output signals at 
frequency © = 1,…,7 and frame n = 1,...,# frames

- posterior probability of the null 
hypothesis, at frame n, computed by ACCIC

Intermediate outputs (to be adapted online):
TV. - average noise spectra estimates at frame n and 

source i
Final outputs: Ui - noise-reduced results at 

each frequency o)and frame n
Procedures:
Take initial value for 瓦,by an average of the first

K frames5 spectra
From frame K+l to end of the input,
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Update average noise spectra by weighted averaging 
瓦 u (1 也("))瓦.(»))K (〃)

where cN is the adaptation frame rate for noise 
spectra

Subtract noise spectra and obtain current source 
estimates
件顼*3两“ ~ai ImS，깨")

S，n)= n)

The constant cN is set to be 0.02, meaning an 
average over 50 = 1/0.02 frames. The conditions 
(""(•)) are same as ACCIC. Since spectral 
subtraction is a popular speech enhancement 
technique, we consider it a 동 a conventional 
background denoising approach for BSS. Similar 
effort has.been tried in [14], using wavelet filterbanks 
instead of spectral subtraction. The performances over 
the real recordings are reported in the following 
sections.

4.3. Experimental Results
Table 2 report^, the SIRs of the input signals, outputs 

of FD-BSS, noise-reduced results of spectral subtraction 
on the FD-BSS outputs, and the interference-canceled 
results with the proposed ACCIC. The music signals 
are active in the whole time courses, so the estimated 
interference energy E2 (u.) is not reliable. Therefore 
we calculate the SIRs only for the first channels 
디vhere the speech signals fl and ml are primary 
sources. To show the performance of the proposed 
method on the different sets of mixtures, we split the 
SIR results of speech + music mixtures and 
speech + speech mixtures and summarized separately.

By applying the FD-BSS, there were about 3.6 dB 
average SIR improvements for speech + music 
mixtures and 4.9 dB for speech + speech mixtures, 
respectively. With the h야p of spectr시 옹ubtraction, 
there were observed 2.3 dB and 2.1 dB more 
improvements. However, when the proposed ACCIC 
is performed, there were additional 3.9 dB and 4.9 dB 
average SIR improvements, which are 6.2 dB and 7.0 
clB improvements from FD-BSS results. Our results 
show that ACCIC improves the performance of 

speech + speech separation more than that of 
speech + music separation. This is because speech 
signals are sparser than music signals, and therefore 
interference옹 occur less frequently in speech mixtures, 
which matches well to our hypothesis model in (5).

Figure 4 plots the results of the proposed method for 
fl-g2 mixture recordings {speech music ), and Figure 
5 plots the results for fl-m2 mixture {speech + speech ). 
The waveform in the left of the first row is observed 
by microphone 1 in Figure 3, and the waveform in the 
right of the first row is by microphone 2. The 
microphone observations are inputted to FD-BSS and 
the second row waveforms are produced. The major 
source of the left of the second row is speech, since 
the left microphone input is already speech-major. 
Similarly the major source of the right of the second 
row is music. The second row signals are inputted to 
both of the spectral subtraction and the proposed 
method. The source presence probabilities are computed 
and represented in the third row. Based on the computed 
probabilities, the post-processing methods remove the 
leftover cross-channel interference signals. The two 
waveforms in the fourth row are the noise-reduced 
results of spectral subtraction, and the waveforms in 
the fifth row are the final denoised results of the 
proposed method. When the primary source is not 
detected (source presence probability is close to 0), 
both successfully cancel out the background source 
component. However when the primary source is 
detected, ACCIC shows better separability than 
spectral subtraction. By listening to the left channel of 
Figure 4, from 10 sec to 15 sec, it is observed that 
ACCIC significantly removed the music sound from 
the speech signal that is left in the FD-BSS outputs, 
however spectral subtraction could rarely reduce the 
interfering music sound. Besides, although music is 
the primary source at the right channel of the FD-BSS 
outputs, music signal of small amplitude (from 4 sec 
to 8 sec) disappeared since that duration was 
identified as "background" and suppressed. Because 
spectral subtraction usually uses slowly-varying noise 
estimates, it is good for the reduction of stationary 
sources such vehicle noise, but non-stationary sources 
such as music or speech signals are difficult to handle.
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Table 1. Measured SIRs of the input signals, FD-BSS。니tp니ts, noise-reduced res나its by spectral s니btraction, and the interference-canceled res니Its by the 
proposed method, (a) 'speech + music' mixture separation res니Its. (b) 'speech + speech* mixture separation results, 'mixt니re' columns indicate the type of 
so니rces mixed into the stereo input. 'f1' and 'f2' are female speakers, 'm1‘, and 'm2' are male speakers, and {'g1', 'g2', 'g3'} are three different nuisic 
signals described in Table 1. 'Average' row lists the average SIRs of each method, and 'Increase' row lists the improvements from the preceding columns. 
The parenthesized values in the last column of the Increase' row are improvements of ACCIC over FD-BSS outputs. All the scalar values are in dB

(a) speech + music mixture separation

Mixture Input BSS only BSS + Spectral 
Subtraction

BSS + 
proposed 
ACCIC

fl定1 11.8 13.7 15.5 17.3

fl-g2 2.2 6.3 8.6 11.9

fl-g3 5.6 10.1 11.4 17.6

ml-gl 9.7 12.3 15.6 18.2

ml-g2 1.6 5.4 8.4 12.0

ml-g3 4.6 9.4 11.5 17.2

Average 5.9 9.5 ■ 11.8 15.7

+3.6 +2.3 +3.9 (+6.2}

(b) speech + speech mixture separation

Mixture Input BSS o이y BSS + Spectral 
Subtraction

BSS + 
proposed 
ACCIC

fl-f2 4.7 8.4 . 9.6 15.4

fl -m2 7.6 11.3 13.8 18.0

ml-f2 2.9 10.1 11.9 17.5

ml-m2 7.5 12.5 15.2 19.5

Average 5.7 10.6 12.6 17.6

Increase +4.9 +2.1 +4.9 (+7.0)

Our proposed method employs the information from 
the other channel and rapidly-varying cross-channel 

interfering sources are better suppressed with the 
help of the cross-channel cancellation factors (9).

The proposed ACCIC is most suitable to sparse 
sources such as speech signals. Since the probability

density models described in (13) are based on the 
variance only, the density functions of sparse sources 
——at 0 and having rapidly changing 
amplitudes over time一- can be better modeled than 
the dense sources such as music signals. Since the 
source absence/presence probabilities computed by 
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Fig. 0. Separation result of the developed method for female-music mixture (f1-g2). First row： waveform views of the microphone 
inputs (recorded signals). Second row： output of FD-BSS algorithm. Third row： source presence probabilities computed by (8). The 
probability values range from 0 to 1. Fourth row: output of spectral subtraction algorithm, on the FD-BSS outputs, using the 
computed source presence probabilities. Fifth row: output of the proposed adaptive cross-channel interference cancellation (ACCIC) 
algorithm. The measured 이Rs are 5.6 dB (microphone recordings), 10.1 dB (FD-BSS), and 11 4 dB (FD-BSS + spectral subtraction), 
and 17.6 dB (FD-BSS + ACCIC). Wave files for all the data are available at http://myhome.naver.com/flyers
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the model significantly affects the accuracy of 
estimating interference-canceling factors, the SIR 
improvements were greater in speech + speech 
mixtures than in speech + music mixtures.

4.4. Experiments with Beamformer Outputs
Our proposed method i동 able to be coupled with any 

kind of multi-channel source separation method, 
provided it produces at least 'emphasized' primary 
source and 'deemphasized' secondary sources. Figure 
6 shows an example of applying ACCIC on the 
outputs of a linearly constrained minimum variance 
beamfbrmer (LCMVBF) [15] instead of FD-BSS. The 
v/avefbrms in the first row are beamfbrmer outputs. 
Three speakers are talking with some overlaps and 
background music is played. This situation is that 
three source signals plus a noise are mixed and 
observed by three sensors, that is, in (1),尚(/)'s are 
the speech sounds and n. (/) is the backgrsind music 
spread over all the sensors. The observed signals are 
tlien passed through a LCMVBF and outputs are 
produced. However, there still remain secondary 
speakers5 speeches and the background music in an 

intelligible amount, although the amplitudes look 
insignificant compared to the target speaker's speech.

On the LCMVBF outputs, we perform spectral 
subtraction and ACCIC and displayed in the third and 
fourth rows of Figure 6. By listening to the ACCIC 
results, non-target speakers, speeches are almost 
removed and the background music is seldom audible. 
These results show that our method is able to cancel 
out common noise components as well, when the 
magnitude of the noise is a lot surlier than the 
primary source. This kind of noise frequently happens 
to be observed in the practical situations, and our 
method is more useful when the number of noise 
sources is not given. Although spectral subtraction 
reduces the uninterested speeches and background 
music to some extent, it produces a lot more musical 
noises and the overall quality is far poorer than 
ACCIC. When multiple observation channels are 
available, ACCIC is expected to show a lot of benefit 
such as the better noise reduction quality and less 
distortion in the target source.

Fig. 0. Separation res니Its of the proposed method for female-male mixture (f1-m2). The measured SIRs are 7.6 dB (microphone 
recordings), 11.3 dB (FD-BSS), 13.8 dB (FD-BSS + spectral subtraction), and 18.0 dB (FD-BSS ACCIC). Although more residual 
signals at the final results are observed than in the case of f1-g2, the listening quality and measured SIR are almost same as f1 -g2 
res니It. Wave files for all the data are available at http://myhomenaver.com/flyers.
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Fig. 0. Res나Its of the proposed method for beamformer outputs. Three speakers are talking and a song is played in the 
background. First row: waveform views of beamformer outputs. Second row: so나rce presence probabilities computed by (8). Third 

row： 。니tp니t of spectral s니btraction algorithm, on the beamformer outputs, using the computed source presence probabilities. 
Fourth row： output of the proposed ACCIC algorithm. After running ACCIC, only a target speaker's speech is emphasized and the 
other 2 speakers' speeches and the background music are oppressed in all of the 3 channels. The measured SIRs are 13.8 dB 

(beamformer outputs), 20.1 dB (beamforming + spectral subtraction), and 22.8 dB (beamforming + ACCIC). Wave files for all the 
data are available at http://myhome.naver.com/flyers.

V. Con이usion

The ordinary BSS algorithms have inherent 
separation errors due to the mismatch between the 
assumed linear model and the real transfer functions. 
We proposed a post-processing technique that is 
applicable to such realistic environments. It has been 
a similar effort to compensate the separation errors for 
stationary noise sources [14]. In the proposed method, 
we deal with nonstationary natural noise sounds on 
the assumption that the number of sources is equal to 
the number of sensors, and each of the blind source 
separation system outputs has a primary source and a 
secondary source signal identified by their relative 
power. The proposed algorithm considers one BSS 
output as noisy signal and the other output as reference 
noise source, and the cancellation is done in the power 
spectral domain as the conventional spectral subtraction 
methods do. The advantage of the power spectral 
subtraction is that it effectively absorbs the small 
amount of mismatch between the actual filter and the 
estimated one, and generates cleanly denoised signals.

The disadvantage is the introduction of the musical 
noises due to the half-wave rectification on the 
subtracted outputs. However, by comparing the separation 
results of the real recordings with the denoised results 
of conventional spectral subtraction, we showed that our 
method is more successfully removes non-stationary 
interfering sources as well as background common noise. 
The introduction of the interference canceling fectors 
enables the extraction of the interfering source character- 
ristics in the other channels, and helps accurate estimation 
of the interfering sources. The potential application areas 
would be noise reduction for automatic speech recog­
nition especially in a vehicle, separation of the speakers in 
a mixed conversation, and reduction of background non­
stationary noise in a distant voice communication.
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