• 제목/요약/키워드: critical parameters

검색결과 1,941건 처리시간 0.025초

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

이동하중과 축하중이 작용하는 유연한 기초위에 지지된 무한보의 동특성 (Dynamic characteristics of flexibly supported infinite beam subjected to an axial force and a moving load)

  • 홍동균;김광식
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.56-68
    • /
    • 1982
  • This paper presents analytic solutions of defection and their resonance diagrams for a uniform beam of infinite length subjected to an constant axial force and moving transverse load simultaneously. Steady solutions are obtained by a time-independent coordinate moving with the load. The supporting foundation includes damping effects. The influences of the axial force, the damping coefficient and the load velocity on the beam response are studied. The limiting cases of no damping and critical damping are also investigate. The profiles of the deflection of the beam are shown graphically for several values of the load speed, the axial force and damping parameters. Form the results, following conclusions have been reached. 1. The critical velocity .THETA.cr decreases as the axial compressive force increases, but increases as the axial tensile force increase. 2. At the critical velocity .THETA.cr the deflection have a tendency to decrease as the axial tensile force increases and to increase gradually as the axial compressive force increases. 3. In case if relatively small dampings, the deflection increases suddenly as the velocity of the moving load approaches the critical velocity, and it reachs its maximum at the critical velocity, and it decreases and become greatly affected by the axial force as the velocity increases further. 4. in case of relatively large dampings, as the velocity increases the deflection decreases gradually and it is affected little by the axial load.

  • PDF

Fourier 변환을 이용한 ZnCdSe 전이점 연구 (Study on critical point of ZnCdSe by using Fourier analysis)

  • 윤재진;공태호;김영동
    • 한국진공학회지
    • /
    • 제16권6호
    • /
    • pp.458-462
    • /
    • 2007
  • 타원편광분석법은 반도체 물질의 광 특성과 전이점 연구에 유용하게 쓰이는 기술이다. 측정된 유전율 함수로부터 전이점을 구하기 위해서 전통적으로 이차 미분스펙트럼을 이용하여 분석하는데, 이 방법은 high frequency 의 잡음을 크게 증폭시키는 단점이 있다. 본 연구에서는 역 공간 푸리에 변환 (Fourier transform)을 이용하여 low-, medium-, high-index 의 푸리에 계수로부터 baseline, 정보, high frequency 잡음을 분리하는 방법을 소개하고자 한다. 이 방법을 이용하여 광전자소자에 폭넓게 사용되는 ZnCdSe 화합물 반도체의 $E_1,\;E_1+{\Delta}_1$ 전이점에 대한 연구를 하여 전통적인 이차 미분법과 비교해 보았다.

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.

다물체 동역학 해석방법을 이용한 철도차량의 임계속도 계산 (Calculation of Critical Speed of Railway Vehicle by Multibody Dynamics Analysis)

  • 강주석
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1371-1377
    • /
    • 2013
  • 본 연구에서는 다물체 동역학 모델을 이용한 철도차량의 임계속도 계산 방법을 제시하였다. 휠과 레일의 접촉 구속조건과 접촉력을 휠셋 단위에서 수식화하였다. 이를 대차모델에 합하여 구속조건을 가진 다물체 동역학 운동방정식으로 철도차량의 동적모델을 표현하였다. 철도차량의 다물체 동역학 모델에 대한 비선형 구속조건식과 운동방정식은 QR 분해법을 이용하여 독립좌표만으로 이루어진 선형방정식으로 유도하였다. 유도된 선형방정식으로부터 휠셋 및 이륜 대차에 대한 고유치 해석결과를 통해 임계속도를 구하였다. 임계속도에 영향을 미치는 차량 파라미터의 영향에 대한 결과를 제시하였다.

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Kim, Minseop;Lee, Seungrae;Yoon, Seok;Jeon, Min-Kyung
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.269-278
    • /
    • 2022
  • The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

UNCERTAINTY IN DAM BREACH FLOOD ROUTING RESULTS FOR DAM SAFETY RISK ASSESSMENT

  • Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권4호
    • /
    • pp.215-234
    • /
    • 2002
  • Uncertainty in dam breach flood routing results was analyzed in order to provide the basis fer the investigation of their effects on the flood damage assessments and dam safety risk assessments. The Monte Carlo simulation based on Latin Hypercube Sampling technique was used to generate random values for two uncertain input parameters (i.e., dam breach parameters and Manning's n roughness coefficients) of a dam breach flood routing analysis model. The flood routing results without considering the uncertainty in two input parameters were compared with those with considering the uncertainty. This paper showed that dam breach flood routing results heavily depend on the two uncertain input parameters. This study indicated that the flood damage assessments in the downstream areas can be critical if uncertainty in dam breach flood routing results are considered in a reasonable manner.

  • PDF

몬테카를로 방법에 의한 제어기의 강건성 해석 (A analysis of the robustness of a controller by Monte-Carlo method)

  • 정우용;홍성경;김종성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.630-635
    • /
    • 1993
  • In this paper, the Monte-Carlo method was applied to the controller robustness evaluation problems with respect to the uncertainty of critical plant parameters. The plant studied is a aerial vehicle. The-variable parameters are nondimensional stability derivatives, inertias. The nominal nondimensional stability derivatives ,were obtained from wind tunnel test. Also the nominal inertia parameters were calculated from the mass distribution along the vehicle axes. But the parameters obtained from the test or calculations are at best probable and always contain some uncertainties which one can not figure out. So some kinds of robustness evaluation method should be applied. The parametric robustness of the designed classical controller evaluated by the method turned out to be satisfactory.

  • PDF

계단 등반을 위한 신개념 로봇 플랫폼의 기구변수 최적화 (Kinematic Optimal Design on a New Robotic Platform for Stair Climbing)

  • 서병훈;홍승열;이재원;서태원
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.427-433
    • /
    • 2013
  • Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body-flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair-climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.