References
- Auli, K.A, Parsinejad, M. and Rahmani, B. (2009), "Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques", J. Comput. Inform. Sci., 2(3), 127-136.
- Baker, R., Shukha, R., Operstein, V. and Frydman, S. (2006), "Stability charts for pseudo-static slope stability analysis", Soil Dyn. Earthq. Eng., 26(9), 813-823. https://doi.org/10.1016/j.soildyn.2006.01.023
- Bakir, B.S. and Akis, E. (2005), "Analysis of a highway embankment failure associated with the 1999 Duzce, Turkey, Earthquake", Soil Dyn. Earthq. Eng., 25(3), 251-260. https://doi.org/10.1016/j.soildyn.2003.05.001
- Bandini, P., Loukidis, D. and Salgado, R. (2005), "Limit analysis of seismically loaded slopes", Proceedings of 16th International Conference of the IACMAG, Toronto, Italy.
- Bishop, A.W. (1955), "The use of the slip circle in the stability analysis of slopes", Geotechnique, 5(1), 7-17. https://doi.org/10.1680/geot.1955.5.1.7
- Campbell, K.W. (1981), "Near source attenuation of peak horizontal acceleration", B. Seism. Society Am., 71(6), 2039-2070.
- Cetin, T. (2010), "Developing a computer program for analysis of slope stability and comparing different analysis methods", MSc. Thesis, Celal Bayar University Manisa, Turkey. [In Turkish]
- Ceylan, H., Gopalakrishnan, K. and Kim, S. (2010), "Soil stabilization with bioenergy coproduct", Transporation Research Record, No. 2186, Washington D.C., pp. 30-137.
- Choobbasti, A.J., Farrokhzad, F. and Barari, A. (2009), "Prediction of slope stability using artificial neural network (A case study: Noabad, Mazandaran, Iran)", Arab. J. Sci Eng., 2(4), 311-319.
- Demuth, H., Beale, M. and Hagan, M. (2006), "Neural network toolbox user's guide", The Math Works, Inc., Natick, Mass.
- Erzin, Y. (2007), "Artificial neural networks approach for swell pressure versus soil suction behavior", Can. Geotech. J., 44(10), 1215-1223. https://doi.org/10.1139/T07-052
- Erzin, Y., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2009), "ANN models for determining hydraulic conductivity of compacted fine grained soils", Can. Geotech. J., 46(8), 955-968. https://doi.org/10.1139/T09-035
- Erzin, Y., Patel, A., Singh, D.N., Tiga, M.G., Yilmaz, I. and Srinivas, K. (2012), "Investigations on factors influencing the crushing strength of some Aegean sands", B. Eng. Geol. Environ., 71(3), 529-536. https://doi.org/10.1007/s10064-012-0424-9
- Erzin, Y., Rao, B.H. and Singh, D.N. (2008), "Artificial neural networks for predicting soil thermal Resistivity", Int. J. Therm. Sci., 47(10), 1347-1358. https://doi.org/10.1016/j.ijthermalsci.2007.11.001
- Erzin, Y., Rao, B.H., Patel, A., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2010), "Artificial neural network models for predicting of electrical resistivity of soils from their thermal resistivity", Int. J. Therm. Sci., 49(1), 118-130. https://doi.org/10.1016/j.ijthermalsci.2009.06.008
- Erzin, Y. and Cetin, T. (2012a), "The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces", Sci. Iran., 19(2), 188-194. https://doi.org/10.1016/j.scient.2012.02.008
- Erzin, Y. and Cetin, T. (2012b), "The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions", Comput. Geosci., 51, 305-313.
- Erzin, Y. and Gunes, N. (2011), "The prediction of swell percent and swell pressure by using neural Networks", Math. Comput. Appl., 16(2), 425-436.
- Fellenius, W. (1936), "Calculation of the stability of earth dams", Transactions, 2nd International Congress on Large Dams, International Commission on Large Dams of the World Power Conference, Vol. 4, pp. 445-462.
- Goh, A.T.C. (1994), "Seismic liquefaction potential assessed by neural networks", J. Geotech. Geoenviron., 120(9), 1467-1480.
- Goh, A.T.C. (1995), "Back-propagation neural networks for modelling complex systems", Artif. Intell. in Eng., 9(3), 143-151. https://doi.org/10.1016/0954-1810(94)00011-S
- Goktepe, B., Agar, E. and Lav, A.H. (2004), "Comparison of multilayer perceptron and adaptive neuro-fuzzy system on backcalculating the mechanical properties of flexible pavements", ARI: The Bulletin of Istanbul Technical University, 54(3), pp. 65-77.
- Grima, M.A. and Babuska, R. (1999), "Fuzzy model for the prediction of unconfined compressive strength of rock samples", Int. J. Rock Mech. Min., 36(3), 339-349. https://doi.org/10.1016/S0148-9062(99)00007-8
- Guo, Z. and Uhrig, R.E. (1992), "Use of artificial neural networks to analyze nuclear power plant performance", Nucl. Technol., 99(1), 36-42. https://doi.org/10.13182/NT92-A34701
- Hack, R., Alkema, D., Kruse, G.A.M., Leenders, N. and Luzi, L. (2007), "Influence of earthquakes on the stability of slopes", Eng. Geol., 91(1), 4-15. https://doi.org/10.1016/j.enggeo.2006.12.016
- Haque, M.E. and Sudhakar, K.V. (2002), "ANN back-propagation prediction model for fracture toughness in microalloy steel", Int. J. Fatigue., 24(9), 1003-1010. https://doi.org/10.1016/S0142-1123(01)00207-9
- Hecht-Nielsen, R. (1987), "Kolomogorov's mapping neural network existence theorem", Proceedings of the first IEEE International Conference on Neural Networks, San Diego, CA, USA, pp. 11-14.
- Hornik, K., Stinchcombe, M., and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Hush, D.R. (1989), "Classification with neural networks: a performance analysis", Proceedings of the IEEE International Conference on Systems Engineering, Dayton, OH, USA, pp. 277-280.
- Janbu, N. (1954), "Application of composite slip surface for stability analysis", Proceedings of European Conference on Stability of Earth Slopes, Stockholm, Sweden, pp. 43-49.
- Kaastra, I. and Boyd, M. (1996), "Designing a neural network for forecasting financial and economic time series", Neurocomputing, 10(3), 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
- Kanellopoulas, I. and Wilkinson, G.G. (1997), "Strategies and best practice for neural network image classification", Int. J. Remote Sens., 18(4), 711-725. https://doi.org/10.1080/014311697218719
- Kanibir, A., Ulusay, R. and Aydan, O. (2006), "Liquefaction-induced ground deformations on a lake shore (Turkey) and empirical equations for their prediction", IAEG2006, paper 362.
- Krishnamoorthy, A. (2007), "Factor of safety of a slope subjected to seismic load", EJGE, 12(E).
- Liang, H. and Zhang, H. (2010), "Identification of slope stability based on the contrast of BP Neural Network and SVM", The 3rd Institute of Electrical and Electronics Engineers (IEEE) International Conference on Computer Science and Information Technology, Chengdu, China, pp. 347-350.
- Metz, C.E. (1986), "ROC methodology in radiologic imaging", Investigative Radiology, 21(9), 720-733. https://doi.org/10.1097/00004424-198609000-00009
- Milton, J.S., McTeer, P.M. and Corbet. J.J. (1997), Introduction to Statistics, McGraw-Hill.
- Morgenstern, N.R. and Price, V.E. (1965), "The analysis of the stability of general slip surfaces", Geotechnique, 15(1), 70-93.
- Negnevitsky, M. (2002), Artificial Intelligence: A Quide to Intelligent Systems, Addison-Wesley, Harlow, U.K.
- Oh, H.J. and Pradhan, B. (2011), "Application of a neuro-fuzzy model to landslide-susceptiblity mapping for shallow landslides in tropical hilly area", Comput. Geosci., 37(9), 1264-1276. https://doi.org/10.1016/j.cageo.2010.10.012
- Orbanic, P. and Fajdiga, M. (2003), "A neural network approach to describing the fretting fatigue in aluminum-steel couplings", Int. J. Fatigue, 25(3), 201-207. https://doi.org/10.1016/S0142-1123(02)00113-5
- Ott, L.R. and Longnecker, M. (2001), An Introduction to Statistical Methods and Data Analysis, (5th Edition), Duxbury, Pacific Grave, CA, USA.
- Pradhan, B. (2010a), "Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia", Adv. Space Res., 45(10), 1244-1256. https://doi.org/10.1016/j.asr.2010.01.006
- Pradhan, B. (2010b), "Landslide Susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches", J. Indian Soc. Remote Sens., 38(2), 301-320. https://doi.org/10.1007/s12524-010-0020-z
- Pradhan, B. (2011), "An assesment of the use of an advanced neural network model with five different training strategies fort he preparation of landslide susceptibility maps", J. Data Sci., 9, 65-81.
- Pradhan, B., Lee, S. and Buchroithner, M.F. (2010), "A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses", Comput. Environ. Urban 34(3), 216-235. https://doi.org/10.1016/j.compenvurbsys.2009.12.004
- Rumelhart, D.E. and McClelland, J.L. (1986), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press, Cambridge, MA, Vol. 1, pp. 318-362.
- Sarma, S.K. (1979), "Stability analysis of embankments and slopes", J. Geotech. Eng. Div., 105(12), 1511-1524.
- Shahin, M.A., Jaksa, M.B. and Maier, H.R. (2001), "Artificial neural network applications in geotechnical engineering", Aust. Geomech., 36(1), 49-62.
- Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2004), "Data division for developing neural networks applied to geotechnical engineering", J. Comput. Civil Eng., 18(2), 105-114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
- Singh, T.N., Gupta, A.R. and Sain, R. (2006), "A comparative analysis of cognitive systems for the prediction of drillability of rocks and wear factor", J. Geotech. Geol. Eng., 24(2), 299-312. https://doi.org/10.1007/s10706-004-7547-0
- Smith, M. (1993), Neural Networks for Modeling, Van Nostrand Reinhold, New York.
- Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A. and Kayabasi, A. (2005), "Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation", Int. J. Rock Mech. Min., 43(2), 224-235.
- Spencer, E. (1967), "A method of analysis of the stability of embankments assuming parallel interslice forces", Geotechnique, 17(1), 11-26. https://doi.org/10.1680/geot.1967.17.1.11
- Stone, M. (1974), "Cross-validatory choice and assessment of statistical predictions", J. Royal Statistic Soc. Series B (Methodological), 36(2), 111-147.
- Swets, J.A. (1988), "Measuring the accuracy of diagnostic systems", Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
- Taylor, D.W. (1940), "Stability of earth slopes", J. Boston Soc. Civil Engineers, 23, 197-247, (1937), Reprinted in contributions to soil mechanics 1925-1940, Boston Society of Civil Engineers, pp. 337-386.
- Terzaghi, K. (1950), Mechanisms of Landslides, Geological Society of America, Berkeley Volume.
- Tsompanakis, Y., Lagaros, N.D., Psarropoulos, P.N. and Georgopoulos, E.C. (2009), "Simulating the seismic response of embankments via artificial neural networks", Adv. Eng. Softw., 40(8), 640-651. https://doi.org/10.1016/j.advengsoft.2008.11.005
- Tuysuz, C. (2010), "The effect of the virtual laboratory on the students' achievement and attitude in chemistry", Int. J. Educ. Sci., 2(1), 37-53.
- Twomey, M. and Smith, A.E. (1997), "Validation and verification. Artificial neural networks for civil engineers: Fundamentals and applications", (Kartam, N., Flood, I. and Garrett, J.H., Eds.), ASCE, New York, pp. 44-64.
- Wang, H.B., Xu, W.Y. and Xu, R.C. (2005), "Slope stability evaluation using back propagation neural networks", Eng. Geol., 80(3-4), 302-315. https://doi.org/10.1016/j.enggeo.2005.06.005
- Yilmaz, I. and Yuksek, A.G. (2008), "An example of artificial neural network application for indirect estimation of rock parameters", Int. J. Rock Mech. Min., 41(5), 781-795.
- Zhu, D.Y. (2008), "Investigations on the accuracy of the simplified Bishop method", The 10th International Symposium on Landslides and Engineered Slopes, China, pp. 1055-1057.
Cited by
- Development of relationships between swelling and suction properties of expansive soils vol.12, pp.1, 2018, https://doi.org/10.1080/19386362.2016.1250040
- The use of neural networks for CPT-based liquefaction screening vol.74, pp.1, 2015, https://doi.org/10.1007/s10064-014-0606-8
- Predicting CBR Value of Stabilized Pond Ash with Lime and Lime Sludge Using ANN and MR Models vol.4, pp.1, 2018, https://doi.org/10.1007/s40891-017-0125-3
- Lateral stability analysis of wedged geomembrane tubes using PFC2D vol.35, pp.5, 2017, https://doi.org/10.1080/1064119X.2016.1236861
- Use of neural networks for the prediction of the CBR value of some Aegean sands vol.27, pp.5, 2016, https://doi.org/10.1007/s00521-015-1943-7
- The use of neural networks for the prediction of cone penetration resistance of silty sands vol.28, pp.S1, 2017, https://doi.org/10.1007/s00521-016-2371-z
- Predictive modeling of static and seismic stability of small homogeneous earth dams using artificial neural network vol.12, pp.2, 2019, https://doi.org/10.1007/s12517-018-4162-6
- On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence vol.12, pp.3, 2014, https://doi.org/10.12989/gae.2017.12.3.441
- Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils vol.20, pp.5, 2014, https://doi.org/10.12989/gae.2020.20.5.385
- Modeling of UCS value of stabilized pond ashes using adaptive neuro-fuzzy inference system and artificial neural network vol.24, pp.19, 2014, https://doi.org/10.1007/s00500-020-04806-x
- Time-variant failure probability of critical slopes under strong rainfall hazard including mitigation effects vol.16, pp.10, 2020, https://doi.org/10.1080/15732479.2020.1712736
- Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2014, https://doi.org/10.12989/gae.2021.26.3.235
- Predicting CBR value of stabilized pond ash with lime and lime sludge using multivariate adaptive regression splines vol.3, pp.4, 2021, https://doi.org/10.1088/2631-8695/ac3c9f