• 제목/요약/키워드: crank

검색결과 477건 처리시간 0.033초

언벤딩 개념을 이용한 선박용 대형 크랭크 쓰로우 굽힘단조 공법 개발 (Development of Bending Process for Crank Throw of Large Marine Engine Using Unbending Concept)

  • 이성모;이원재;김인호;박연구;박효준
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.46-49
    • /
    • 2007
  • The purpose of this study is to develop the optimum shape of blank for the crank throw of large marine engine in order to reduce manufacturing cost and forging defects. The effects of the curvature radius and the height of wing part of blank selected as design variables on the defects and machining margin of final products after forging process were investigated using FEA. Based on the results, the optimum shape for the blank of the crank throw was proposed and verified by experiment.

  • PDF

대형 크랭크 스로우의 형단조 적용 연구 (A study on the application of closed-die forging method for the large crank throw)

  • 송민철;신상범;김병화;주성호;이명규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.180-183
    • /
    • 2005
  • The purpose of this study is to evaluate a closed-die forging method for large crank throw using analytical and numerical approaches. A closed-die forging equipment with wedge and links was proposed to forge large crank throw using kinematic analysis. The minimum press capacity for the closed-die forging was established using the comprehensive FEA.

  • PDF

THE UNIMODALITY OF THE r3-CRANK OF 3-REGULAR OVERPARTITIONS

  • Robert XiaoJian Hao;Erin YiYing Shen
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.621-635
    • /
    • 2024
  • An 𝑙-regular overpartition of n is an overpartition of n with no parts divisible by 𝑙. Recently, the authors introduced a partition statistic called r𝑙-crank of 𝑙-regular overpartitions. Let Mr𝑙(m, n) denote the number of 𝑙-regular overpartitions of n with r𝑙-crank m. In this paper, we investigate the monotonicity property and the unimodality of Mr3(m, n). We prove that Mr3(m, n) ≥ Mr3(m, n - 1) for any integers m and n ≥ 6 and the sequence {Mr3(m, n)}|m|≤n is unimodal for all n ≥ 14.

손실 매질에 대한 Isotropic-Dispersion 유한 차분식의 2D Crank-Nicolson FDTD 기법 (2D Crank-Nicolson FDTD Method Based on Isotropic-Dispersion Finite Difference Equation for Lossy Media)

  • 김현;고일석;육종관
    • 한국전자파학회논문지
    • /
    • 제21권7호
    • /
    • pp.805-814
    • /
    • 2010
  • 기존 Crank-Nicolson FDTD 기법(CN FDTD 기법)의 비등방성 분산 특성을 개선하기 위한 CN ID-FDTD 기법을 제안하였다. 제안한 CN ID-FDTD 기법은 공간 미분 연산을 위해 기존 CN FDTD 기법의 centered 유한 차분식 (Finite Difference equation: FD 연산식)이 아닌 isotropic-dispersion 유한 차분식(ID-FD 연산식)$^{[1],[2]}$을 이용한다. 본 논문에서는 손실 매질에 대한 CN ID-FDTD 기법의 분산 관계식을 유도하였고, 이 분산 관계식을 이용해 ID-FD 연산식에서 분산 오차(dispersion error)를 줄이는 가중치(weighting factor)와 보정값(scaling factor)을 제시하였다. 그리고 해석 결과의 정확성 비교를 통해 CN ID-FDTD 기법에서는 기존 CN FDTD 기법의 단점이었던 비등방성 분산 오차가 확연하게 감소하는 것을 확인하였다.

보행패턴을 접목한 직립주행 자전거용 크랭크 구동장치의 거동분석 (Design of Crank Drive System Based on Gait Pattern for Stand-up Bicycle)

  • 형준호;노종련;김사엽
    • 대한기계학회논문집A
    • /
    • 제41권10호
    • /
    • pp.991-996
    • /
    • 2017
  • 인간의 보행에서 안정적인 디딤을 가능하게 하는 동작특성은 보행 일주기의 60%를 차지하는 긴 디딤국면이다. 본 연구에서는 이러한 보행패턴을 자전거의 크랭크 구동장치에 반영하여 직립자세에서 안정적으로 구동할 수 있는 자전거를 설계하고자 한다. 크랭크의 회전속도를 디딤국면에서는 느리게 되돌림국면에서는 빠르게 움직이도록 급속귀환 기구를 크랭크 구동시스템에 적용하였다. 이 급속귀환 크랭크기구의 설계변수를 정의하고 설계변수의 변화가 크랭크의 거동에 미치는 영향을 시뮬레이션 하였다. 또한 실험장치를 제작한 후 탑승자의 구동동작을 분석한 결과 보행패턴을 접목한 크랭크는 사용자 무게중심 안정화에 기여하는 것으로 나타났다. 향후 보행패턴을 접목한 크랭크는 서서 타는 자전거의 구동시스템에 접목 가능할 것으로 보인다.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

굽힘 및 비틀림모멘트를 고려한 크랭크축의 응력해석 (Stress Analysis of Crank Shaft by Considering Bending and Twisting Moment)

  • 이정윤;정주석
    • 한국안전학회지
    • /
    • 제8권3호
    • /
    • pp.13-18
    • /
    • 1993
  • This paper an application method of crankshaft of four cylinder internal combustion engine for studying stress analysis of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Metrix Method was used, considering branched part and coordinate transformation part. Bending, twisting moment and stresses of crank shaft were investigated.

  • PDF