DOI QR코드

DOI QR Code

2D Crank-Nicolson FDTD Method Based on Isotropic-Dispersion Finite Difference Equation for Lossy Media

손실 매질에 대한 Isotropic-Dispersion 유한 차분식의 2D Crank-Nicolson FDTD 기법

  • Kim, Hyun (Dept. of Electrical and Electronics Engineering, Yonsei University) ;
  • Koh, Il-Suek (Graduate School of Information and Communication, Inha University) ;
  • Yook, Jong-Gwan (Dept. of Electrical and Electronics Engineering, Yonsei University)
  • 김현 (연세대학교 전기전자공학과) ;
  • 고일석 (인하대학교 정보통신대학원) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Accepted : 2010.06.23
  • Published : 2010.07.31

Abstract

The Crank-Nicolson isotropic-dispersion finite difference time domain(CN ID-FDTD) scheme is proposed based on isotropic-dispersion finite difference(ID-FD) $equation^{[1],[2]}$. The dispersion relation of CN ID-FDTD is derived for lossy media by solving the eigenvalue problem of iteration matrix in spatial spectral domain, in addition, the weighting factors and scaling factors of the CN ID-FDTD scheme are presented for low dispersion error. The CN ID-FDTD scheme makes the dispersion error drastically reduced and shows accurate numerical results compared to the conventional Crank-Nicolson FDTD method.

기존 Crank-Nicolson FDTD 기법(CN FDTD 기법)의 비등방성 분산 특성을 개선하기 위한 CN ID-FDTD 기법을 제안하였다. 제안한 CN ID-FDTD 기법은 공간 미분 연산을 위해 기존 CN FDTD 기법의 centered 유한 차분식 (Finite Difference equation: FD 연산식)이 아닌 isotropic-dispersion 유한 차분식(ID-FD 연산식)$^{[1],[2]}$을 이용한다. 본 논문에서는 손실 매질에 대한 CN ID-FDTD 기법의 분산 관계식을 유도하였고, 이 분산 관계식을 이용해 ID-FD 연산식에서 분산 오차(dispersion error)를 줄이는 가중치(weighting factor)와 보정값(scaling factor)을 제시하였다. 그리고 해석 결과의 정확성 비교를 통해 CN ID-FDTD 기법에서는 기존 CN FDTD 기법의 단점이었던 비등방성 분산 오차가 확연하게 감소하는 것을 확인하였다.

Keywords

References

  1. I. Koh, H. Kim, J. Lee, J. Yook, and C. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability", IEEE Trans. Antennas and Propagation, vol. 54, no. 11, pp. 3505-3510, Nov. 2006. https://doi.org/10.1109/TAP.2006.884288
  2. 고일석, 김 현, 육종관, "등방성 분산 특성과 개선된 시간 증분을 가지는 2차원 시간 영역 유한 차분법", 한국전자파학회논문지, 17(2), pp. 165-170, 2006년 2월.
  3. K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas and Propagation, vol. 14, no. 3, pp. 302-307, May 1966. https://doi.org/10.1109/TAP.1966.1138693
  4. A. Taflove, S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd Edition, Norwood, MA: Artech House, 1995.
  5. H. Kim, I. Koh, and J. Yook, "Implicit ID-FDTD algorithm based on crank-nicolson scheme: update equations, dispersion relation, and stability analysis", Submitted for Publication in IEEE Trans. Antennas and Propagation. https://doi.org/10.1109/TAP.2011.2143684
  6. I. Koh, H. Kim, and J. Yook, "New scaling factors of 2-D Isotropic-Dispersion Finite Difference Time Domain(ID-FDTD) algorithm for lossy media", IEEE Trans. Antennas and Propagation, vol. 56, no. 2, pp. 613-617, Feb. 2008. https://doi.org/10.1109/TAP.2007.915481
  7. 고일석, 김 현, 육종관, "손실 매질에 대한 2차원 등방 시간 영역 유한 차분법", 한국전자파학회논문지, 18(6), pp. 664-673, 2007년 6월. https://doi.org/10.5515/KJKIEES.2007.18.6.664
  8. W. Kim, I. Koh, and J. Yook, "3D Isotropic Dispersion(ID)-FDTD algorithm: update equation and characteristic analaysis", IEEE Trans. Antennas and Propagation, vol. 58, no. 4, pp. 1251-1259, Apr. 2008. https://doi.org/10.1109/TAP.2010.2041311
  9. T. Namiki, "A new FDTD algorithm based on alternating-direction implicit method", IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 10, pp. 2003-2007, Oct. 1999. https://doi.org/10.1109/22.795075
  10. H. Kim, I. Koh, and J. Yook, "2D ADI-FDTD based on isotropic dispersion finite difference scheme", IEEE Antennas Propagation Society International Symposium, pp. 3732-3735, Jun. 2007. https://doi.org/10.1109/APS.2007.4396350
  11. G. Sun, C. W. Trueman, "Unconditionally stable crank-nicolson scheme for solving the two-dimensional Maxell's equation", IEE Electronics Letters, vol. 39, pp. 595-597, Apr. 2000.
  12. H. Kim, I. Koh, and J. Yook, "2D CN-FDTD based on isotropic dispersion finite difference scheme", IEEE Antennas Propagation Society International Symposium, pp. 3728-3731, Jun. 2007. https://doi.org/10.1109/APS.2007.4396349
  13. A. P. Zhao, "Analysis of numerical dispersion of the 2-D alternating-direction implicit FDTD method", IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 4, pp. 1156-1164, Apr. 2002. https://doi.org/10.1109/22.993419
  14. W. Kim, I. Koh, and J. Yook, "3-D isotropic dispersion FDTD algorithm for rectangular grid", Accepted for Publication in IEEE Antennas and Wireless Propagation Letters, 2010. https://doi.org/10.1109/LAWP.2010.2051313
  15. G. Sun, C. W. Trueman, "Analysis and numerical experiments on the numerical dispersion of two-dimensional ADI-FDTD", IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 78-81, 2003. https://doi.org/10.1109/LAWP.2003.814771
  16. J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, "A supernodal approach to sparse partial pivoting", SIAM J. Matrix Analysis and Applications, vol. 20, no. 3, pp. 720-755, 1999. https://doi.org/10.1137/S0895479895291765
  17. J. G. Proakis, D. K. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 3rd Edition, Prentice hall, NJ, 1996.
  18. G. Waldschmidt, A. Taflove, "The determination of the effective radius of a filamentary source in the FDTD mesh", IEEE Microwave and Guided Wave Letters, vol. 10, no. 6, pp. 217-219, Jun. 2000. https://doi.org/10.1109/75.852420