So, Hyun-Chul;Kim, Kuk-Saeng;Yim, Hyun-June;Jee, Hae-Seong;Park, Bong-Jun;Yoo, In-Suk
Transactions of the Korean Society of Automotive Engineers
/
v.14
no.2
/
pp.23-31
/
2006
Tolerance analysis of auto body requires the consideration of its compliance because of potentially significant deformation during the spot-weld assembly process. In this paper, a relatively recent method for such analyses is briefly introduced as one can find in the literature. In this method, it is important to take into account of the covariance between the sources of variation as they are closely located, which is the case in most auto body assembly. However, it is often impossible to know such covariance, for example, when a new car is being developed. Therefore, a mechanics-based method is proposed in this paper to estimate the covariance among the sources of variation by finite element analyses and simple statistical computations. The proposed method is illustrated by applying it to a three-dimensional model of real front wheel housing.
Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
International Journal of Aeronautical and Space Sciences
/
v.11
no.4
/
pp.326-337
/
2010
This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.
Journal of the Korean Data and Information Science Society
/
v.17
no.4
/
pp.1271-1278
/
2006
Recently, a profit analysis in hospital management is considered as an important marketing concept. When spatial variability is presented, we must analyze the hospital data with spatial statistical methods. In this study, we present a regression model using spatial covariance for adjustment. And we compare the nonspatial model with spatial model.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.4
/
pp.361-368
/
2015
This paper reports an unscented Kalman filter approach for localization of a mobile robot in an indoor environment. The method proposes a new model of measurement uncertainty which adjusts the error covariance according to the measured distance. The method also uses non-zero off diagonal values in error covariance matrices of motion uncertainty and measurement uncertainty. The method is tested through experiments in an indoor environment of 100*40 m working space using a differential drive robot which uses Laser range finder as an exteroceptive sensor. The results compare the localization performance of the proposed method with the conventional method which doesn't use adaptive measurement uncertainty model. Also, the experiment verifies the improvement due to non-zero off diagonal elements in covariance matrices. This paper contributes to implementing and evaluating a practical UKF approach for mobile robot localization.
Objective: This study examines the genetic factors influencing the phenotypes (four economic traits:oleic acid [C18:1], monounsaturated fatty acids, carcass weight, and marbling score) of Hanwoo. Methods: To enhance the accuracy of the genetic analysis, the study proposes a new statistical model that excludes environmental factors. A statistically adjusted, analysis of covariance model of environmental and genetic factors was developed, and estimated environmental effects (covariate effects of age and effects of calving farms) were excluded from the model. Results: The accuracy was compared before and after adjustment. The accuracy of the best single nucleotide polymorphism (SNP) in C18:1 increased from 60.16% to 74.26%, and that of the two-factor interaction increased from 58.69% to 87.19%. Also, superior SNPs and SNP interactions were identified using the multifactor dimensionality reduction method in Table 1 to 4. Finally, high- and low-risk genotypes were compared based on their mean scores for each trait. Conclusion: The proposed method significantly improved the analysis accuracy and identified superior gene-gene interactions and genotypes for each of the four economic traits of Hanwoo.
Communications for Statistical Applications and Methods
/
v.24
no.4
/
pp.383-396
/
2017
The model in our approach assumes that computer responses are a realization of a Gaussian processes superimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of variables or building a good reduced model in classical regression is an important process to identify variables influential to responses and for further analysis such as prediction or classification. One reason to select some variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and approach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms select some non-zero regression coefficients (${\beta}^{\prime}s$) using forward and backward methods along with the Lasso guided approach. During this process, the fixed were covariance parameters (${\theta}^{\prime}s$) that were pre-selected by the Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection models using four test functions and one real data example. Future extensions are also discussed.
This paper discusses model building for repeated binary response data with different time-dependent covariates each occasion. Since repeated measurements data are having correlated structure, weighed least squares(WLS) methodology is applied. Repeated measures designs are usually having different sizes of experimental units like split-plot designs. However repeated measures designs differ from split-plot designs in that the levels of one or more factors cannot be randomly assigned to one or more of the sizes of experimental units in the experiment. In this case, the levels of time cannot be assigned at random to the time intervals. Because of this nonrandom assignment, the errors corresponding to the respective experimental units may have a covariance matrix. So, the estimates of effects included in a suggested logit model are obtained by using covariance structures.
An expression for the cross covariance of the logconductivity and the head in nonstationary porous formation is obtained. This cross covariance plays a key role in the inverse problem, i.e., in inferring the statistical characteristics of the conductivity field from head data. The nonstationary logconductivity is modeled as superposition of definite linear trend and stationary fluctuation and the hydraulic head in saturated aquifers is found through stochastic analysis of a steady, two-dimensional flow. The cross covariance with a Gaussian correlation function is investigated for two particular cases where the trend is either parallel or normal to the head gradient. The results show that cross covariances are stationary except along separation distances parallel to the mean flow direction for the case where the trend is parallel to head gradient. Also, unlike the stationary model, the cross covariance along distances normal to flow direction is non-zero. From these observations we conclude that when a trend in the conductivity field is suspected, this information must be incorporated in the analysis of groundwater flow and solute transjport.
Intrusion detection is very important for network situation awareness. While a few methods have been proposed to detect network intrusion, they cannot directly and effectively utilize semi-quantitative information consisting of expert knowledge and quantitative data. Hence, this paper proposes a new detection model based on a directed acyclic graph (DAG) and a belief rule base (BRB). In the proposed model, called DAG-BRB, the DAG is employed to construct a multi-layered BRB model that can avoid explosion of combinations of rule number because of a large number of types of intrusion. To obtain the optimal parameters of the DAG-BRB model, an improved constraint covariance matrix adaption evolution strategy (CMA-ES) is developed that can effectively solve the constraint problem in the BRB. A case study was used to test the efficiency of the proposed DAG-BRB. The results showed that compared with other detection models, the DAG-BRB model has a higher detection rate and can be used in real networks.
Manoj Khaniya;Yasuto Tachikawa;Kodai Yamamoto;Takahiro Sayama;Sunmin Kim
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.25-25
/
2023
The ensemble optimal interpolation (EnOI) scheme is a sub-optimal alternative to the ensemble Kalman filter (EnKF) with a reduced computational demand making it potentially more suitable for operational applications. Since only one model is integrated forward instead of an ensemble of model realizations, online estimation of the background error covariance matrix is not possible in the EnOI scheme. In this study, we investigate two Gaussian noise based ensemble generation strategies to produce dynamic covariance matrices for assimilation of water level observations into a distributed hydrological model. In the first approach, spatially correlated noise, sampled from a normal distribution with a fixed fractional error parameter (which controls its standard deviation), is added to the model forecast state vector to prepare the ensembles. In the second method, we use an adaptive error estimation technique based on the innovation diagnostics to estimate this error parameter within the assimilation framework. The results from a real and a set of synthetic experiments indicate that the EnOI scheme can provide better results when an optimal EnKF is not identified, but performs worse than the ensemble filter when the true error characteristics are known. Furthermore, while the adaptive approach is able to reduce the sensitivity to the fractional error parameter affecting the first (non-adaptive) approach, results are usually worse at ungauged locations with the former.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.