• Title/Summary/Keyword: coupling intensity

Search Result 148, Processing Time 0.024 seconds

Polymer Dispersed Liquid Crystal for Enhanced Light Out-Coupling Efficiency of Organic Light Emitting Diodes

  • Gasonoo, Akpeko;Ahn, Hyeon-Sik;Lee, Jonghee;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.140-146
    • /
    • 2020
  • We investigated light extraction film based on polymer dispersed liquid crystal (PDLC) for application in organic light emitting diodes (OLEDs). At least 30 seconds of direct UV irradiation process for curing PDLC film on a bottom-emitting OLEDs was successfully achieved without damage on the intrinsic properties of the OLED. We demonstrated that high haze and transmittance can be tuned simultaneously by controlling the UV curing time. By adding PDLC as an external layer without any additional treatment, the light scattering and extraction is increased. Consequently, a PDLC scattering film with 89.8% and 59.9 of total transmittance and haze respectively, achieved about 16% of light intensity enhancement from integrating sphere measurement.

Synthesis of Aniline-Based Azopolymers for Surface Relief Grating

  • Jung, Woo-Hyuk;Ha, Eun-Ju;Chung, Il-Doo;Lee, Jang-Oo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.532-538
    • /
    • 2008
  • Epoxy-based azopolymers were synthesized by the reaction of the diglycidyl ether of bisphenol A (DGEBA) or N,N-diglycidyl aniline (DGA) with disperse orange 3 (DO3) to give poly(DGEBA-co-DO3) or poly(DGA-co-DO3), respectively. Aniline-based azopolymers prepared from poly(DGA-co-An) precursors, synthesized by the reaction of DGA with aniline, were produced by the post-azo coupling reaction with diazonium salts containing various substituents. Holographic gratings were carried out to measure the diffractive efficiencies (DE) for the interference patterns of the $Ar^+$ laser from 50 to $300\;mW/cm^2$ intensity. The shorter repeating unit with higher chromophore density induced deeper surface relief gratings (SRG). Large surface gratings were observed for the aniline-based azopolymers with -COOH substituents, as compared with those for epoxy-based azopolymers. The aniline-based azopolymers with dimerized chromophores and various substituents were also synthesized to observe the effect of chromophore substituents and dimerization on the holography. The dimerized chromophores were more sensitively photoisomerized by the $Ar^+$ laser beam, and demonstrated a larger grating than that with one azo bond.

Investigation on the phonon behavior of MgB2 films via polarized Raman spectra

  • R. P. Putra;J. Y. Oh;G. H. An;H. S. Lee;B. Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • In this study, we explore the anisotropy of electron-phonon coupling (EPC) constant in epitaxially grown MgB2 films on c-axis oriented Al2O3, examining its correlation with the critical temperature (Tc) and local structural disorder assessed through polarized Raman scattering. Analysis of the polarized Raman spectra reveals angle-dependent variations in the intensity of the phonon spectra. The Raman active mode originating from the boron plane, along with two additional phonon modes from the phonon density of states (PDOS) induced by lattice distortion, was distinctly observed. Persistent impurity scattering, likely attributed to oxygen diffusion, was noted at consistent frequencies across all measurement angles. The EPC values derived from the primary Raman active phonon do not significantly vary with changing observation angles, followed by that the Tc values calculated using the Allen and Dynes formula remain relatively constant across all polarization angles. Although the E2g phonon mode plays a crucial role in the EPC mechanism, the determination of Tc values in MgB2 involves not only electron-E2g coupling but also contributions from other phonon modes.

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

Optical information storage using diffraction properties of volume hologram in Fe-LiNbO$_3$ crystal (Fe-LiNbO$_3$결정에서 부피형 홀로그램의 회절특성을 이용한 광정보 저장)

  • An, Jun-Won;Kim, Nam;Lee, Kwon-Yeon
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.63-71
    • /
    • 1998
  • In this paper, we experiment the characteristics of coupling coefficient, gain, diffraction efficiency and dependence of time determined by TWM(Two-Wave Mixing), using Fe-LiNbO$_3$ crystal(doped with 0.015Wt.%). From these results, we proposed to apply for optical memory application. The highest coupling angle of 14。 and maximum coupling coefficient of 6.9$cm^{-1}$ / are obtained at 514.5nm wavelength. Also, maximum diffraction efficiency is 54.13% when intensity ratio and writing beam incident angle are 0.1 and 14o, respectively. After fixing process, diffraction efficiency is 21.4%. As an example, we demonstrated the writing and reconstruct optical data using spatial light modualtor and angular multiplexing in most optimal condition.

  • PDF

Magneto-inductive Wave in Periodic Chain of Ferrite Cores and Chip Capacitors (페라이트 코어와 칩캐패시터의 주기적 연결구조에서 발생하는 자기유도파)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2015
  • In this paper, a magneto-inductive wave generated in a chain of LC resonators fabricated with Ni-Zn ferrite cores and chip capacitors is presented. RF signal propagates to neighbor resonator one by one as a consequence of the magnetical coupling between two resonators in the device. The magnetical coupling is due to the mutual inductances along the chain of resonators. So, the signal amplitude (${\approx}$ coupling intensity) is dependent of the mutual inductance which can be adjusted by applied magnetic field. In order to demonstrate the device, some experiments have been carried out systemically. The transmission characteristics of a magneto-inductive wave could be controlled by applied external magnetic field. The device composed of 5 resonators; the center frequencies were estimated to be 32 MHz and 38 MHz with the external magnetic flux density of 75 Oe and 222 Oe, respectively. We expect that the reported results could open a promising way to a high variety of applications in one- and two-dimensional functional devices, such as transducers, delay lines, power dividers and couplers.

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Beam deflection using photorefractive volume grating in Ce-SBN:60 crystal (Ce-SBN:60결정에서 광굴절 부피격자를 이용한 광편향)

  • Ahn, Jun-Won;Kim, Nam;Lee, Kwon-Yeon;Kim, Hye-young;Won, Yong-Hyup
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.315-319
    • /
    • 1997
  • In photorefractive crystals, light deflection is achieved by dynamic photorefractive volume grating, which is induced by the interference of two writing beams. In this paper, we implemented and analyzed the light deflector using Ce-SBN:60 crystals, which is doped with CeO$_2$ and photorefractive effect is induced by low intensity. And we measured maximum coupling coefficient, effective charge density, diffraction efficiency as the intensity ratio and response time.

  • PDF