DOI QR코드

DOI QR Code

Investigation on the phonon behavior of MgB2 films via polarized Raman spectra

  • R. P. Putra (Department of Physics, Chungbuk National University) ;
  • J. Y. Oh (Department of Physics, Chungbuk National University) ;
  • G. H. An (Department of Physics, Chungbuk National University) ;
  • H. S. Lee (Department of Physics, Chungbuk National University) ;
  • B. Kang (Department of Physics, Chungbuk National University)
  • Received : 2024.03.07
  • Accepted : 2024.03.29
  • Published : 2024.03.31

Abstract

In this study, we explore the anisotropy of electron-phonon coupling (EPC) constant in epitaxially grown MgB2 films on c-axis oriented Al2O3, examining its correlation with the critical temperature (Tc) and local structural disorder assessed through polarized Raman scattering. Analysis of the polarized Raman spectra reveals angle-dependent variations in the intensity of the phonon spectra. The Raman active mode originating from the boron plane, along with two additional phonon modes from the phonon density of states (PDOS) induced by lattice distortion, was distinctly observed. Persistent impurity scattering, likely attributed to oxygen diffusion, was noted at consistent frequencies across all measurement angles. The EPC values derived from the primary Raman active phonon do not significantly vary with changing observation angles, followed by that the Tc values calculated using the Allen and Dynes formula remain relatively constant across all polarization angles. Although the E2g phonon mode plays a crucial role in the EPC mechanism, the determination of Tc values in MgB2 involves not only electron-E2g coupling but also contributions from other phonon modes.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3044518)

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Superconductivity at 39 K in Magnesium Diboride, Nature 410, 63-64, Mar. 2001.  https://doi.org/10.1038/35065039
  2. H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, The Origin of the Anomalous Superconducting Properties of MgB2, Nature 418, 758, Aug. 2002. 
  3. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Superconductivity of Metallic Boron in MgB2, Phys. Rev. Lett. 86, 4656, May 2001. 
  4. J. M. An, and W. E. Pickett, Superconductivity of MgB2: Covalent Bonds Driven Metallic, Phys. Rev. Lett.86, 4366, May 2001. 
  5. K. P. Bohnen, R. Heid, and B. Renker, Phonon Dispersion and Electron-phonon Coupling in MgB2 and AlB2, Phys. Rev. Lett. 86, 5771, June 2001. 
  6. T. Yildirim, O. Gulseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava, Giant Anharmonicity and Nonlinear Electron-Phonon Coupling in MgB2: A Combined First-Principles Calculation and Neutron Scattering Study, Phys. Rev. Lett. 87, 037001, June 2001. 
  7. A. Y. Liu, I. I. Mazin, and J. Kortus, Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps, Phys. Rev. Lett. 87, 087005, Aug. 2001. 
  8. Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Electron-phonon Interaction in The Normal and Superconducting States of MgB2, Phys. Rev. B 64, 020501, May 2001. 
  9. E. Nishibori, M. Takata, M. Sakata, H. Tanaka, T. Muranaka, and J. Akimitsu, Bonding Nature in MgB2, J. Phys. Soc. Jpn. 70, pp. 2252-2254, May 2001.  https://doi.org/10.1143/JPSJ.70.2252
  10. K. Kunc, I. Loa, K. Syassen, R. K. Kremer and K. Ahn, MgB2 under Pressure: Phonon Calculations, Raman Spectroscopy, and Optical Reflectance, J. Phys.: Condens. Matter 13, pp 9945-9962, Oct. 2001.  https://doi.org/10.1088/0953-8984/13/44/310
  11. W. X. Li, Y. Li, H. R. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, Electron-phonon Interaction in the Normal and Superconducting States of MgB2, Phys. Rev. B 77 094517, March 2008. 
  12. W. X. Li, Y. Li, H. R. Chen, R. Zeng, M. Y. Zhu, H. M. Jin and S. X. Dou, Electron-phonon Coupling Properties in MgB2 Observed by Raman Scattering, J. Phys.: Condens. Matter 20 255235, May 2008. 
  13. R.P. Putra, Y.S. Lee, P. Duong, Y.J. Ko, W.N. Kang, K.-H. Kim, and B. Kang, Electron-phonon Coupling Behavior in MgB2 Films with Various Thicknesses of ZnO Buffer Layer on Metallic Substrates, Solid State Commun. vol. 323, 114117, Jan. 2021. 
  14. X. Zheng, A. V. Progebnyakov. A. Kotcharov, J. E. Jones, X. X. Xi, E. M. Lysczek, J. M. Redwing, S. Xu, Q. Li, J. Lattieri, D. G. Schlom, W. Tian, X. Pan, and Z-K. Liu, In situ Epitaxial MgB2 Thin Films for Superconducting Electronics, Nature Materials, 1, pp. 35-38, Sept. 2002.  https://doi.org/10.1038/nmat703
  15. W. K Seong, S. Oh, and W. N. Kang, Perfect Domain-lattice Matching between MgB2 and Al2O3 Single-crystal MgB2 Thin Films Grown on Sapphire, Jpn. J. Appl. Phys. 51, 083101, July 2012. 
  16. A. A. Baker, L. B. Bayu Aji, J. H. Bae, E. Stavrou, J. L. Beckham, S. K. McCall, and S. O. Kucheyev, Control of Superconductivity in MgB2 by Ion Bombardment, J. Phys. D: Appl. Phys. 52, 295302, May 2019. 
  17. A. A. Baker, L. B. Bayu Aji, J. H. Bae, E. Stavrou, D. J. Steich, S. K. McCall and S. O. Kucheyev, Vapor Annealing Synthesis of non-Epitaxial MgB2 Films on Glassy Carbon, Supercond. Sci. Technol. 31, 055006, March 2018 
  18. P. M. Rafailov, S. Bahrs, and C. Thomsen, The Raman Spectra of MgB2 and Its Potential Impurity Phases, Phys. Stat. Sol. (b) 226, No. 2, R9-R11, June 2011  https://doi.org/10.1002/1521-3951(200108)226:23.0.CO;2-Q
  19. B. Xu, N. Mao, Y. Zhao, L. Tong, and J. Zhang, Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials, J. Phys. Chem. Lett. 12, pp. 7442-7452, Aug. 2021.  https://doi.org/10.1021/acs.jpclett.1c01889
  20. Y. Zhao, S. S. Zhang, Y. P. Shi, Y. F. Zhang, R. Saito, J. Zhang, L. M. Tong, Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light, ACS Nano 14, 10527-10535, Aug. 2020.  https://doi.org/10.1021/acsnano.0c04467
  21. D. L. Rousseau, R. P. Bauman, and S. P. S. Porto, Normal Mode Determination in Crystals, J. Raman Spectrosc. vol 10, 1, pp. 253-290, Jan. 1981.  https://doi.org/10.1002/jrs.1250100152
  22. L. Du, J. Tang, Y. Zhao, X. Li, R. Yang, X. Hu, X. Bai, X. Wang, K. Watanabe, T. Taniguchi, D. Shi, G. Yu, X. Bai, T. Hasan, G. Zhang and Z. Sun, Lattice Dynamics, Phonon Chirality and SpinPhonon Coupling in 2D Itinerant Ferromagnet Fe3GeTe2, Adv. Funct. Mater. 29, 1904734, Sept. 2019. 
  23. R. Loudon, The Raman effects in Crystals, Adv. Phys, vol.50, no. 7 pp. 813-864, Oct. 2001.  https://doi.org/10.1080/00018730110101395
  24. V. Heine, Group Theory in Quantum Physics, 3rd ed, vol. 9. Pergamon Press, 1970, pp. 304-310 
  25. W. L. McMillan, Transition Temperature of Strong-Coupled Superconductor, Phys. Rev. 167, 331, March 1968. 
  26. P. B. Allen, and R.C. Dynes, Transition Temperature of Strong-Coupled Superconductor Reanalyzed, Phys. Rev. B. 12, 905, Aug. 1975. 
  27. A. Brinkman, A. A. Golubov, H. Rogalla, O. V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, and O. K. Andersen, Multiband model for Tunneling in MgB2 Junction, Phys. Rev. B. 65, 180517(R), May 2002. 
  28. G. Blumberg, A. Mialitsin, B. S. Dennis, N. D. Zhigadlo, and J. Karpinski, Multi-gap Superconductivity in MgB2: Magneto-Raman Spectroscopy, Physica C, 456, pp. 75-82, Feb. 2007.  https://doi.org/10.1016/j.physc.2007.02.011
  29. G. Blumberg, A. Mialitsin, B. S. Dennis, M. V. Klein, N. D. Zhigadlo, and J. Karpinski, Observation of Legget's Collective Mode in a Multiband MgB2 Superconductor, Phys. Rev. Lett. 99, 227002, Nov. 2007. 
  30. A. Mialitsin, B. S. Dennis, N. D. Zhigadlo, J. Karpinski and G. Blumberg, Anharmonicity and Self-energy Effects of the E2g Phonon in MgB2, Phys. Rev. B. 75. 020509, Jan. 2007. 
  31. P. B. Allen, Neutron Spectroscopy of Superconductors, Phys. Rev. B. 6, 2577, Oct. 1972