• Title/Summary/Keyword: coupled-line

Search Result 721, Processing Time 0.026 seconds

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

The design concept of the multi-coupled operation for high speed train (고속열차 중련운전 설계에 관한 연구)

  • Choi Kweon-hee;Chang Dae-sung;Jung Byung-ho;Lee Byung-seok;Kim Kuk-jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.877-882
    • /
    • 2005
  • The definition of multi-coupled operation is that coupled two trainsets is able to be operated one trainset identically. That is to say, the one driver, coupled two trainsets can operate the traction and braking system, control vehicle doors, phanto-graph, HVAC and passenger room lighting system etc, such as one trainset controlling. This study will provide high speed train design engineer with introducing multi-coupled operation system electrically and presentation automatic complex coupler mechanism, and then this paper will be applied to design next generation high speed train system such as Jun-la/Ho-nam line

A Study on a New Measurement Method of the Microstrip Parallel Coupled Lne Parameters (마이크로스트립 평행 결합선로 파라미터의 새로운 측정방법에 관한 연구)

  • Chang, Ik-Soo;Yoon, Young-Chul;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.139-143
    • /
    • 1988
  • A new measurement method of coupled transmission line characteristics is described. This method presents precision values of even-and odd-mode impedances as well as effective dielectric constants of symmetric parallel coupled microstrip lines from the scalar quantities obtained by transmission coefficients at two different resonance frequencies. Especially these values include dispersion effects in the measured frequency band. The measured impedances and effective dielectric constants of actually fabricated coupled lines on the Teflon substrates with low dielectric constants are good agreement with predicted values. And the experimental pass band characteristics of single section resonator by using previously designed coupled lines agree well with theoretical values.

  • PDF

Comparison of Two Layout Options for 110-GHz CMOS LC Cross-Coupled Oscillators

  • Kim, Doyoon;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.141-143
    • /
    • 2018
  • Two 110-GHz oscillators have been developed in 65-nm CMOS technology. To study the effect of layout on the circuit performance, both oscillators had the same LC cross-coupled topology but different layout schemes of the circuit. The oscillator with the conventional cross-coupled design (OSC1), showed an output power of -3.9 dBm at 111 GHz with a phase noise of -75 dBc/Hz at 1-MHz offset. On the other hand, OSC2, with a modified cross-coupled line layout, generated an output power of -2.0 dBm at 117 GHz with a phase noise of -77 dBc/Hz at 1-MHz offset. The result indicates that the optimized layout can improve key oscillator performances such as oscillation frequency and output power.

Compact Tri-Band Bandpass Filter Using Dual-Mode Stepped-Impedance Resonators and Parallel Coupled-Lines (이중 모드 SIR과 평행 결합선로를 이용한 소형 3중-대역 대역통과 필터 설계)

  • Gyuje Sung;Young Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • This paper proposes a tri-band bandpass filter using dual-mode stepped-impedance resonators (SIRs) with parallel coupled structures. The proposed filter adopts U-shaped SIRs with open stubs and parallel coupled lines (PCLs) that have inter-digital and comb-line shorted ends. Two U-shaped SIRs with open stubs build the first and third passband, and the central PCL resonators build the second passband. Five resonators and coupling structures are theoretically analyzed to derive the scattering parameters of the proposed filter. A novel tri-band bandpass filter is designed and fabricated using the induced scattering parameters. The measured result of the fabricated tri-band bandpass filter shows a good agreement with the simulated one.

Modal Transmission-Line Theory of Three-Waveguide Couplers (3-도파로 방향성 결합기의 전송선로 해석법)

  • 호광춘;이리홍김영권
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.185-188
    • /
    • 1998
  • A three-waveguide coupler consisted of a central guide and two side guides is theoretically explored by using modal transmission-line theory. The numerical results reveal that the coupling length Lc is different from that calculated by coupled-mode theory and the difference increases gradually as the guiding modes increase.

  • PDF

Design and Fabrication of 5-Bit Broadband MMIC Phase Shifter (5-Bit 광대역 MMIC 위상 변위기 설계 및 제작)

  • 정상화;백승원;이상원;정기웅;정명득;우병일;소준호;임중수;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2002
  • 5-bit broadband MMIC phase shifter has been designed and fabricated. For the broadband performance, 11.25$^{\circ}$, 22.5$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$ bit have been designed with Lange coupler and 180$^{\circ}$ bit has been implemented by using shorted coupled line with Lange coupler and $\pi$-network of transmission line. Due to Lange coupler with large size, the Lange couplers have been folded far circuit size reduction. Low loss PIN diode has been utilized as a switch for each bit. Fabricated 5-bit broadband phase shifter shows the measured results that RMS phase error of 5 major phases is 3.5$^{\circ}$, maximum insertion loss is 12.5 dB, and maximum input and output return loss are 7 dB and 10 dB, respectively. The size of fabricated phase shifter is 6.5$\times$5.3 $ extrm{mm}^2$.

Improvement of Band Pass Filter Using PBG and Aperture (Aperture와 PBG를 적용한 대역통과 여파기 성능개선에 관한 연구)

  • 이승재;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.847-852
    • /
    • 2003
  • Apertures and PBG(Photonic Band Gap) has been employed on the ground plane in the coupled line filter simultaneously. In order to observe the maximum bandwidth, we used the line gap 0.2mm which is can be made in our lab. Band-pass filter type is four-stage coupled strip line filter. Teflon has been used for the substrate ($\varepsilon$$\sub$r/=3.2). The center frequency and the bandwidth are 2.18GHz and 230MHz, respectively. The bandwidth is broaden from 230MHz to 310MHz (80Mhz, about 34.7%) by aperture effect and harmonic frequencies are suppressed to 20-30dB by PBG effect. So the harmonic frequencies have been suppressed by the PBG effect and the bandwidth are broaden by aperture effect.

A study on efficiency improvement of power amplifier from enhanced harmonic suppression using DGS coupled line (DGS 결합선로를 이용하여 고조파 억압특성을 향상시킨 전력증폭기의 효율증대에 관한 연구)

  • Song, Dae-Geon;Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.13-18
    • /
    • 2009
  • This paper suggests that efficiency improvement of power amplifier to enhance harmonic suppression using a DGS line structure. A efficiency related harmonic component is an important factor to design of power amplifier. Therefor harmonic component suppress consisting coupled line using DGS after power amplifier. A DGS line with periodic slits and stubs is first designed and joined after power ampifier. Experimental measurements for efficiency of power amplifier in the WCDMA are shown to improve 6% of PAE.

  • PDF

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.