• Title/Summary/Keyword: corrosion evaluation

Search Result 908, Processing Time 0.035 seconds

A Experimental Study on the Evaluation of Anti-corrosion Performance of rebar in concrete added chloride and inhibitor using EIS method (EIS를 이용한 염화물 및 방청제가 첨가된 콘크리트에 매립된 철근의 방식성능 평가에 관한 실험적 연구)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.134-135
    • /
    • 2016
  • To evaluate anti-corrosion performance of rebar in concrete according to the amount of chloride and inhibitor, electrochemical impedance spectroscopy(EIS) method was conducted in this study. For the anti-corrosion performance evaluation according to time, Impedance of rebar in concrete was measured before and after 5 cycle of corrosion acceleration. As a results, The impedance of rebar in concrete added chloride decreased than before corrosion acceleration. However impedance of other specimens was maintained or increased than before corrosion acceleration.

  • PDF

Evaluation of the Corrosion Protection Coating in Accordance with Burn Damage (Burn Damage에 따른 도막의 방청성 평가)

  • Seo, ChangHo;Park, JinHwan
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.290-296
    • /
    • 2016
  • This study was conducted in order to examine the effect of burn damage and the resultant anti-corrosion performance. The breakdown and defect of the paint film caused by burn damage are considered to affect not only the macroscopic appearance but also the adhesive force and the anti-corrosion performance of the paint film. The material of the paint film was epoxy paint that is used most widely for heavy-duty coating, and in order to induce burn damage, heat treatment with a torch was applied to the other side of the paint film. Surface and chemical structure changes according to aging were analyzed using FE-SEM and infrared absorption spectroscopy, and variation in the anti-corrosion performance was analyzed through the AC impedance test.

A Study on the Evaluation Technology of Welds Integrity in Nuclear Power Plants

  • Chang, Hyun-Young;Kim, Jong-Sung;Jin, Tae-Eun
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-32
    • /
    • 2007
  • The final goal of this study is to develop the core technologies applicable to the design, operation and maintenance of welds in nuclear structures. This study includes predicting microstructure changes and residual stress for welded parts of nuclear power plant components. Furthermore, researches are performed on evaluating fatigue, corrosion, and hydrogen induced cracking and finally constructs systematically integrated evaluation system for structural integrity of nuclear welded structures. In this study, metallurgical and mechanical approaches have been effectively coordinated considering real welding phenomena in the fields of welds properties such as microstructure, composition and residual stress, and in the fields of damage evaluations such as fatigue, corrosion, fatigue crack propagation, and stress corrosion cracking. Evaluation techniques tried in this study can be much economical and effective in that it uses theoretical/semi-empirical but includes many additional parameters that can be introduced in real phenomena such as phase transformation, strength mismatch and residual stress. It is clear that residual stress makes great contribution to fatigue and stress corrosion cracking. Therefore the mitigation techniques have been approached by reducing the residual stress of selected parts resulting in successful conclusions.

Evaluation of Hydrogen Sulfide Corrosion Inhibitors for Wet Gas Pipeline Steel

  • Huy, Vu Dinh;Thoa, Nguyen Thi Phuong;Phong, Tran Quoc;Hoang, Nguyen Thai
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.95-99
    • /
    • 2005
  • Wheel test and potentiodynamic polarization methods were used to evaluate the relative effectiveness of some hydrogen sulfide corrosion inhibitors for the wet gas pipeline API 5L grade X 65 steel. Five commercially corrosion inhibitors have been studied in the deoxygenated produced water solutions containing 10 ppm and 100 ppm of hydrogen sulfide. Based on the experiment results the steel corrosion inhibition mechanism in discussed and two most effective corrosion inhibitors are selected.

Survey of National Corrosion Cost

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.173-176
    • /
    • 2006
  • Previous national studies on costs of corrosion are reviewed and brief explanations are given of the Uhlig method, Hoar method and Input-output method that are employed for corrosion cost estimation. Total costs of corrosion of 11 countries are summarized and the results by Uhlig methods are compared especially for the recent studies from the U.S, Japan and China.

EVALUATION OF GALVANIC CORROSION BEHAVIOR OF SA-508 LOW ALLOY STEEL AND TYPE 309L STAINLESS STEEL CLADDING OF REACTOR PRESSURE VESSEL UNDER SIMULATED PRIMARY WATER ENVIRONMENT

  • Kim, Sung-Woo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.773-780
    • /
    • 2012
  • The article presented is concerned with an evaluation of the corrosion behavior of SA-508 low alloy steel (LAS) and Type 309L stainless steel (SS) cladding of a reactor pressure vessel under the simulated primary water chemistry of a pressurized water reactor (PWR). The uniform corrosion and galvanic corrosion rates of SA-508 LAS and Type 309L SS were measured in three different control conditions: power operation, shutdown, and power operation followed by shutdown. In all conditions, the dissimilar metal coupling of SA-508 LAS and Type 309L SS exhibited higher corrosion rates than the SA-508 base metal itself due to severe galvanic corrosion near the cladding interface, while the corrosion of Type 309L in the primary water environment was minimal. The galvanic corrosion rate of the SA-508 LAS and Type 309L SS couple measured under the simulated power operation condition was much lower than that measured in the simulated shutdown condition due to the formation of magnetite on the metal surface in a reducing environment. Based on the experimental results, the corrosion rate of SA-508 LAS clad with Type 309L SS was estimated as a function of operating cycle simulated for a typical PWR.

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.