• Title/Summary/Keyword: corrosion area

Search Result 571, Processing Time 0.024 seconds

A Study on the Development of Corrosion Detecting System for 22.9 kV Distribution Power Line Insulation Cable (22.9kV 배전선로 절연전선의 부식 검출 시스템 개발에 대한 연구)

  • Kim, Yong-Jun;Oh, Yong-Cheul;Yi, Keon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1410-1416
    • /
    • 2011
  • A corrosion detecting system for 22.9 kV distribution power line insulation cable, which can travel autonomously along the live line, is proposed. Eddy current test method is employed to detect the corrosion, and the system developed here is capable of detecting internal corrosion of a ACSR-OC. Somewhat details of the electrical and mechanical mechanism of the system and traveling algorithm are introduced. Experimental results applied to the sample cables having artificial corrosion and the operating distribution lines are provided. From the result, we confirmed that the system is useful for detecting internal corrosion of a ACSR, and is expected to be a new non-destructive testing equipment in the area of diagnosis for the distribution power line.

Empirical Study on water wall tube corrosion mechanism for Tangential type coal fired power plant boiler (석탄화력발전소 보일러의 수냉벽튜브 부식 메카니즘에 대한 실증적 고찰)

  • Baek, Sehyun;Kim, HyunHee;Park, Hoyoung;Ko, SungHo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • In this study, boiler tube thickness measurement and numerical analysis were conducted for standard 500MW coal-fired power plant in order to research the mechanism of tangential-fired boiler corrosion empirically. The most dominant corrosion mechanism of tangential-fired boiler waterwall was corrosion by sulfur contained in the unburned carbon. And the secondary mechanism was $H_2S$ gas corrosion at localized reducing atmosphere. It is required to decrease the air-stage combustion operation in order to mitigate the waterwall tube corrosion. Also stringent coal pulverization quality control and reinforcing work for corrosion susceptible area such as anti-corrosion coatings is required

Effect of corrosion environment on the SCC of Al-brass tube for vessel (선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향)

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

The anti-corrosion study on the corrosion-sensitive areas of unpainted weathering steel bridges with closed box girder(II) (밀폐 박스거더형 무도장 내후성강 교량의 부식취약부에 대한 방식대책 연구(II))

  • Song, Chang-Young;Lee, Eui-Ho;Lee, Jea-Hyun;Park, Hyun-Chul;Choi, Jae-Suk;Noh, Young-Tae
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • This study is the second stage of developing the corrosion control technical manual about unpainted weathering steel bridge with closed box girder structures. This paper contains selection of corrosive sealant to apply into crevice of upper flange, injecting test of sealant at mock-up equipment with various condition, evaluation of experiment result. Through the experiment of injection of sealants into crevice of mock-up equipment, it is proved that the tar sealant injecting corrosion control method is useful to protect corrosion at box girder upper flange corroded by remaning rain water with calcium chloride.

Corrosion Behavior of AZ91 Magnesium Alloy (AZ91 마그네슘합금의 부식거동)

  • Yim, Chang Dong;Kim, Young Min;Park, Sung Hyuk;You, Bong Sun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.619-627
    • /
    • 2012
  • One of the barriers limiting wide applications of magnesium alloys to various industries is their poor corrosion resistance. The corrosion properties of AZ91 magnesium alloy, which is the most popular magnesium casting alloy, are affected by microstructural and environmental factors. The corrosion properties of AZ91 magnesium alloy are affected by the corrosion properties of ${\alpha}-Mg$ and ${\beta}$ phases, the volume fraction and distribution of ${\beta}$ phase and area ratio of ${\alpha}-Mg/{\beta}$ phases. The corrosion properties of AZ91 magnesium alloy under various environments also change according to the passivity of films and types of corrosion products formed on its surface. The corrosion resistance of the magnesium alloys can be improved by microstructural control through the addition of alloying elements and optimization of the production process.

The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity (항공기 주기환경이 대기부식위험도에 미치는 영향)

  • Yun, Juhee;Lee, Dooyoul;Park, Sungryul;Kim, Min-Saeng;Choi, Dongsu
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.

Corrosion Tests for High Chromium Cast Iron Using Galvanostatic Polarization Technique in a Simulating Slurry Solution (모사 슬러리 용액에서 정전류 분극을 활용한 고크롬 주철 부식 시험)

  • Ochgerel Baasanjav;Jun-Seob Lee;Ye-Jin Lee;Jun-Seok Oh;Je-hyun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.252-256
    • /
    • 2023
  • The galvanostatic polarization technique was used to accelerate corrosion in high chromium cast iron (HCCI) immersed in a simulated slurry solution of 0.1 mol dm-3 H2SO4, 0.05 mol dm-3 HCl, and 10 wt% SiC. The HCCI contained 27 wt% of Cr and 2.8 wt% of C, and its microstructure mainly comprised austenitic and carbide phases. A two-electrode system using a dense carbon rod and the HCCI sample was employed for the galvanostatic polarization by applying an anodic current for 24 hours. The corrosion rate increased upon applying the anodic current, but the increase was not significant, particularly for current densities higher than 10 µA cm-2. Following polarization, the corrosion morphology revealed that the anodic current accelerated surface corrosion in the HCCI; however while the depth of the corroded area increased, the increase was not substantial. The propagation behavior of the anodic current and its impact on corrosion were further discussed.

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming;Dun, Yuchao;Zhang, Guodong;Zhao, Xuhui;Zuo, Yu
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

  • Kim, Ki Tae;Chang, Hyun Young;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.49-58
    • /
    • 2017
  • Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

Influence of Current Density Application Time on the Corrosion Damage of Offshore Wind Steel Substructure in Galvanostatic Corrosion Experiment (해상풍력 하부 구조물용 강재의 정전류 부식 시험 시 전류밀도 인가 시간이 부식손상에 미치는 영향)

  • Lee, Jung-Hyung;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.5
    • /
    • pp.431-438
    • /
    • 2016
  • This research investigated the relationship between the corrosion damage characteristics of offshore wind steel substructure and the time of current density application by electrochemical accelerated short-term corrosion test. The galvanostatic corrosion was conducted on the steel specimens in natural seawater with a constant current density ranging from $1mA/cm^2$ to $200mA/cm^2$ for 1 ~ 180 min. Macro and micro observation was carried out on the surface of the corrosion damaged area using SEM and 3-dimensional analysis microscope. The weight loss of the specimens before and after was calculated as the difference between the initial weight prior to corrosion and weight after removal of the corrosion product. It was shown that during galvanostaic corrosion process, the corrosion behavior could be characterized by the onset of pitting corrosion in the early stage and the uniform corrosion in the late stage, showing damage development in the depth direction with the time of current application. The result of the 3D analysis revealed that both damage depth and surface roughness increased with increasing time of current application. The weight loss curves with time showed that a coefficient of determination ($R^2$) was relatively high for the relationship between the time of current application and weight loss. As a result, the degree of corrosion can be controlled by simply varying the time of current application.