DOI QR코드

DOI QR Code

Corrosion Behavior of AZ91 Magnesium Alloy

AZ91 마그네슘합금의 부식거동

  • Yim, Chang Dong (Light Metal Division, Korea Institute of Materials Science) ;
  • Kim, Young Min (Light Metal Division, Korea Institute of Materials Science) ;
  • Park, Sung Hyuk (Light Metal Division, Korea Institute of Materials Science) ;
  • You, Bong Sun (Light Metal Division, Korea Institute of Materials Science)
  • 임창동 (한국기계연구원 부설 재료연구소 경량금속연구단) ;
  • 김영민 (한국기계연구원 부설 재료연구소 경량금속연구단) ;
  • 박성혁 (한국기계연구원 부설 재료연구소 경량금속연구단) ;
  • 유봉선 (한국기계연구원 부설 재료연구소 경량금속연구단)
  • Received : 2011.03.22
  • Published : 2012.09.25

Abstract

One of the barriers limiting wide applications of magnesium alloys to various industries is their poor corrosion resistance. The corrosion properties of AZ91 magnesium alloy, which is the most popular magnesium casting alloy, are affected by microstructural and environmental factors. The corrosion properties of AZ91 magnesium alloy are affected by the corrosion properties of ${\alpha}-Mg$ and ${\beta}$ phases, the volume fraction and distribution of ${\beta}$ phase and area ratio of ${\alpha}-Mg/{\beta}$ phases. The corrosion properties of AZ91 magnesium alloy under various environments also change according to the passivity of films and types of corrosion products formed on its surface. The corrosion resistance of the magnesium alloys can be improved by microstructural control through the addition of alloying elements and optimization of the production process.

Keywords

Acknowledgement

Supported by : 재료연구소

References

  1. N. E. Kang, C. D. Yim, B. S. You, and I. M. Park, Korean J. Met. Mater. 48, 85 (2010). https://doi.org/10.3365/KJMM.2010.48.01.085
  2. H. L. Kim and Y. W. Chang, Met. Mater. Int. 17, 563 (2011). https://doi.org/10.1007/s12540-011-0806-8
  3. C. D. Yim, N. E. Kang, and B. S. You, Met. Mater. Int. 16, 377 (2010). https://doi.org/10.1007/s12540-010-0606-6
  4. G. Song, Adv. Eng. Mater. 7, 563 (2005). https://doi.org/10.1002/adem.200500013
  5. E. Ghali, W. Dietzel, and K. U. Kainer, J. Mater. Eng. & Perfor. 13, 7 (2004). https://doi.org/10.1361/10599490417533
  6. L. Wang, B. P. Zhang, and T. Shinohara, Materials and Design 31, 857 (2010). https://doi.org/10.1016/j.matdes.2009.07.049
  7. M. C. Zhao, M. Liu, G. L. Song, and A. Atrens, Adv. Eng. Mater. 10, 93 (2008). https://doi.org/10.1002/adem.200700234
  8. G. Song and A. Atrens, Adv. Eng. Mater. 5, 837 (2003). https://doi.org/10.1002/adem.200310405
  9. R. K. Singh Raman, Metall. Mater. Trans. A 35, 2525 (2004). https://doi.org/10.1007/s11661-006-0233-5
  10. G. Song, A. Atrens, and M. Dargusch, Corros. Sci. 41, 249 (1999).
  11. R. Ambat, N. N. Aung, and W. Zhou, Corros. Sci. 42, 1433 (2000). https://doi.org/10.1016/S0010-938X(99)00143-2
  12. R. Ambat, N. N. Aung, and W. Zhou, J. Appl. Electrochem. 30, 865 (2000). https://doi.org/10.1023/A:1004011916609
  13. N. N. Aung and W. Zhou, J. Appl. Electrochem. 32, 1397 (2002). https://doi.org/10.1023/A:1022698916817
  14. G. Ballerini, U. Bardi, R. Bignucolo and G. Ceraolo, Corros. Sci. 47, 2173 (2005). https://doi.org/10.1016/j.corsci.2004.09.018
  15. G. Song, A. L. Bowles and D. H. StJohn, Mater. Sci. Eng. A 366, 74 (2004). https://doi.org/10.1016/j.msea.2003.08.060
  16. A. E. Coy, F. Viejo, P. Skeldon, and G. E. Thompson, Corros. Sci. 52, 3896 (2010). https://doi.org/10.1016/j.corsci.2010.08.006
  17. L. Han, X. Nie, J. Ni, Q. Zhang, P. Zhang, and Henry Hu, Magnesium Technology 2009 (eds. E. A. Nyberg, S. R. Agnew, N. R. Neelameggham, and M. O. Pekguleryuz), p.21, TMS, San Francisco, U.S.A. (2009).
  18. K. D. Ralston and N. Birbilis, Corrosion 6, 075005-1 (2010).
  19. T. Zhang, Y. Shao, G. Meng, Z. Cui, and F. Wang, Corros. Sci. 53, 1960 (2011). https://doi.org/10.1016/j.corsci.2011.02.015
  20. O. Lunder, J. E. Lein, T. K. Aune, and K. Nisancioglu, Corrosion 45, 741 (1989). https://doi.org/10.5006/1.3585029
  21. C. D. Lee, C. S. Kang, and K. S. Shin, Met. Mater. Int. 6, 351 (2000). https://doi.org/10.1007/BF03028082
  22. C. D. Lee, C. S. Kang, and K. S. Shin, Met. Mater. Int. 6, 441 (2000). https://doi.org/10.1007/BF03028133
  23. C. L. Makar and K. J. Kruger, Electrochem. Soc. 137, 849 (1990). https://doi.org/10.1149/1.2086567
  24. C. B. Baliga and P. Tsakiropoulos, Mater. Sci. Technol. 9, 513 (1993). https://doi.org/10.1179/mst.1993.9.6.513
  25. S. Mathieu, C. Rapin, J. Hazan, and P. Steinmetz, Corros. Sci. 44, 2737 (2002). https://doi.org/10.1016/S0010-938X(02)00075-6
  26. S. Mathieu, C. Rapin, J. Steinmetz, and P. Steinmetz, Corros. Sci. 45, 2741 (2003). https://doi.org/10.1016/S0010-938X(03)00109-4
  27. W. Zhang, S. Jin, E. Ghali, R. Tremblay, M. Shehata, and E. Es-Sadigi, Adv. Eng. Mater. 8, 973 (2006). https://doi.org/10.1002/adem.200600061
  28. J. W. Chang, L. M. Peng, X. W. Guo, A. Atrens, P. H. Fu, W. J. Ding, and X. S. Wang, J. Appl. Electrochem. 38, 207 (2008). https://doi.org/10.1007/s10800-007-9426-x
  29. M. C. Zhao, M. Liu, G. Song, and A. Atrens, Corros. Sci. 50, 1939 (2008). https://doi.org/10.1016/j.corsci.2008.04.010
  30. L. Wang, T. Shinohara, and B. P. Zhang, J. Solid State Electrochem. 14, 1897 (2010). https://doi.org/10.1007/s10008-010-1020-1
  31. G. Song, A. Atrens, X. Wu, and B. Zhang, Corros. Sci. 40, 1769 (1998). https://doi.org/10.1016/S0010-938X(98)00078-X
  32. D. Daloz, P. Steinmetz, and G. Michot, Corrosion 53, 944 (1993).
  33. C. D. Yim, Y. M. Kim, and B. S. You, Mater. Trans. 48, 1023 (2007). https://doi.org/10.2320/matertrans.48.1023
  34. B. L. Yu and J. Y. Uan, Metall. Mater. Trans. A 36, 2245 (2005) https://doi.org/10.1007/s11661-005-0343-5
  35. T. Zhang, Y. Li, and F. Wang, Corrosi. Sci. 48, 1249 (2006). https://doi.org/10.1016/j.corsci.2005.05.011
  36. M. Jonsson and D. Persson, Corros. Sci. 52, 1077 (2010). https://doi.org/10.1016/j.corsci.2009.11.036
  37. M. Jonsson, D. Persson, and R. Gubner, J. Electrochem. Soc. 154, C684 (2007). https://doi.org/10.1149/1.2779957
  38. Y. Wan, J. Tan, G. Song, and C. Yan, Metall. Mater. Trans. A 37, 2313 (2006) https://doi.org/10.1007/BF02586149
  39. R. Lindstrom, L. G. Johansson, and J. E. Svensson, Mater. & Corrosi. 54, 587 (2003). https://doi.org/10.1002/maco.200390130
  40. M. Jonsson, D. Persson, and D. Thierry, Corros. Sci. 49, 1540 (2007). https://doi.org/10.1016/j.corsci.2006.08.004
  41. M. Jonsson, D. Persson, and C. Leygraf, Corros. Sci. 50, 1406 (2008). https://doi.org/10.1016/j.corsci.2007.12.005
  42. L. Yang, Y. Wei, L. Hou, and D. Zhang, Corros. Sci. 52, 345 (2010). https://doi.org/10.1016/j.corsci.2009.09.020
  43. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, Mater. & Corrosi. 57, 789 (2005).
  44. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, Electrochim. Acta 52, 3299 (2007). https://doi.org/10.1016/j.electacta.2006.10.007
  45. Y. Tian, L. Yang, Y. Li, Y. Wei, L. Hou, Y. Li, and R. Murakami, Trans. Nonferrous Met. Soc. China 21, 912 (2011). https://doi.org/10.1016/S1003-6326(11)60801-7