DOI QR코드

DOI QR Code

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming (Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology) ;
  • Dun, Yuchao (Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology) ;
  • Zhang, Guodong (Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology) ;
  • Zhao, Xuhui (Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology) ;
  • Zuo, Yu (Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology)
  • Received : 2017.02.11
  • Accepted : 2017.08.17
  • Published : 2017.08.31

Abstract

Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

Keywords

References

  1. J. G. Zoran, A. T. C. Gordana, S. R. Nenad, and M. D. Iva, Constr. Build. Mater., 27, 305 (2012). https://doi.org/10.1016/j.conbuildmat.2011.07.044
  2. S.-J. Park and M.-K. Seo, Mat. Sci. Eng. A, 366, 348 (2004). https://doi.org/10.1016/j.msea.2003.08.123
  3. C. Desmettre and J.-P. Charron, Cement Concrete Res., 42, 945 (2012). https://doi.org/10.1016/j.cemconres.2012.03.014
  4. J. Y. Hou and D. D. L. Chung, Cement Concrete Res., 27, 649 (1997). https://doi.org/10.1016/S0008-8846(97)00058-6
  5. S. Wen and D. D. L. Chung, Cement Concrete Res., 31, 665 (2001). https://doi.org/10.1016/S0008-8846(01)00474-4
  6. J. Wu and D. D. L. Chung, Carbon, 40, 445 (2002). https://doi.org/10.1016/S0008-6223(01)00133-6
  7. Z.-Q. Shi and D. D. L. Chung, Cement Concrete Res., 29, 435 (1999). https://doi.org/10.1016/S0008-8846(98)00204-X
  8. S. Ivorra, P. Garces, G. Catala, L. G. Andio, and E. Zornoza, Mater. Design, 31, 1553 (2010). https://doi.org/10.1016/j.matdes.2009.09.050
  9. X.-G. Wang, W.-P. Zhang, W. Cui, and F. H. Wittmann, Cement Concrete Comp., 33, 513 (2011). https://doi.org/10.1016/j.cemconcomp.2011.02.008
  10. A. H. Al-Saidy and K. S. Al-Jabri, Compos. Struct., 93, 1775 (2011). https://doi.org/10.1016/j.compstruct.2011.01.011
  11. M. Tavakkolizadeh and Hamid Saadatmanesh, J. Compos. Constr., 5, 200 (2001). https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(200)
  12. X. W. Guo, Dev. Appli. Mater., 13, 16 (1998).
  13. A. A. Torres-Acosta, A. A. Sagues, and R. Sen, Proc. NACE Conf., Paper No.98648, Houston, TX (1998).
  14. A. A. Torres-Acosta and R. Sen, J. Appl. Electrochem., 35, 529 (2005). https://doi.org/10.1007/s10800-005-1318-3
  15. D. Schnerch, K. Stanford, E. Sumner, and S. Rizkalla, Proc. International Symposium on Bond Behaviour of FRP in Structures Conf., pp. 435-444, Hong Kong, China (2005).
  16. F. E. Sloan and J. B. Talbot, Corrosion, 48, 830 (1992). https://doi.org/10.5006/1.3315882
  17. A. Bentur, N. Berke, and S. Diamond, Steel corrosion in concrete: fundamentals and civil engineering practice, 2nd ed., pp. 1-208, CRC Press, London, UK (2005).
  18. B. Huet, V. L'Hostis, F. Miserque, and H. Idrissi, Electrochim. Acta, 51, 172 (2005). https://doi.org/10.1016/j.electacta.2005.04.014
  19. H. Yu, K.-T. K. Chiang, and L. Yang, Constr. Build. Mater., 26, 723 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.079
  20. ASTM-1065, C. Andrade, M. C. Alonso, and J. A. Gonzalez, An initial effort to use the corrosion rate measurements for estimating rebar durability. Corrosion Rates of Steel in Concrete, pp. 29-37, Philadelphia (1990).
  21. B. Chen, W. Yao, and K.-R. Wu, Mat. Sci. Eng., 19, 76 (2001).
  22. S. J. Ford, J. D. Shane, and T. O. Mason, Cement Concrete Res., 28, 1737 (1998). https://doi.org/10.1016/S0008-8846(98)00156-2
  23. P. Ghods, O. B. Isgor, J. R. Brown, F. Bensebaa, and D. Kingston, Appl. Surf. Sci., 257, 4669 (2011). https://doi.org/10.1016/j.apsusc.2010.12.120
  24. D. S. Petrovic and D. Mandrino, Mater. Charact., 62, 503 (2011). https://doi.org/10.1016/j.matchar.2011.03.011
  25. W. Ying, Y. X. Shi, and B. M. Wei, J. Chinese Soc. Corros. Protection, 18, 107 (1998).
  26. G. Zhang, S. Sun, D. Yang, J. P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008). https://doi.org/10.1016/j.carbon.2007.11.002
  27. Z. R. Yue, W. Jiang, L. Wang, H. Toghiani, S. D. Gardner, and C. U. Pittman Jr., Carbon, 37, 1607 (1999). https://doi.org/10.1016/S0008-6223(99)00041-X
  28. J. W. Shim, S. J. Park, and S. K. Ryu, Carbon, 39, 1635 (2001). https://doi.org/10.1016/S0008-6223(00)00290-6