• Title/Summary/Keyword: cooperative transmission

Search Result 353, Processing Time 0.026 seconds

Relay Cooperative Transmission Scheme for an WiMedia based Shipboard Wireless Bridge (와이미디어기반 선내 무선 브릿지용 릴레이 협력통신 방식)

  • Jeon, Dong-Keun;Lee, Yeonwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.687-696
    • /
    • 2014
  • An integrated ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, an wireless bridge is essential to transmit control and/or managing information to sensors or instruments from a central integrated ship area network station. In this paper, one of reliable schemes of WiMedia based wireless bridge using relay cooperative transmission using WiMedia distributed MAC protocol is proposed to increase a communication reliability between cluster headers, irrespective of channel variation. Simulation results show that the proposed wireless bridge using relay cooperative transmission scheme increases communication reliability.

Node Selection Algorithm for Cooperative Transmission in the Wireless Sensor Networks (무선 센서네트워크에서 협업전송을 위한 노드선택 알고리즘)

  • Gao, Xiang;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1238-1240
    • /
    • 2009
  • In the wireless sensor network, cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

Outage Analysis of Cooperative Transmission in Two-Dimensional Random Networks over Rayleigh Fading Channels

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.262-268
    • /
    • 2011
  • In this paper, we evaluate the outage performance of cooperative transmission in two-dimensional random networks. Firstly, we derive the joint distributions of the source-relay and the relay-destination links. Secondly, the outage probability for the decode-and-forward relaying system is derived when selection combining (SC) is employed at the destination. Finally, we calculate the average outage probability of the system and then attempt to express it by a simple approximate expression. The simulation results are presented to verify the accuracy of the derivations. Similar to deterministic networks, the cooperative transmission in random networks outperforms direct transmission at a high signal-to-noise ratio (SNR).

Energy-Efficient Cooperative Beamforming based CMISO Transmission with Optimal Nodes Deployment in Wireless Sensor Networks

  • Gan, Xiong;Lu, Hong;Yang, Guangyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3823-3840
    • /
    • 2017
  • This paper analyzes the nodes deployment optimization problem in energy constrained wireless sensor networks, which multi-hop cooperative beamforming (CB) based cooperative-multi-input-single-output (CMISO) transmission is adopted to reduce the energy consumption. Firstly, we establish the energy consumption models for multi-hop SISO, multi-hop DSTBC based CMISO, multi-hop CB based CMISO transmissions under random nodes deployment. Then, we minimize the energy consumption by searching the optimal nodes deployment for the three transmissions. Furthermore, numerical results present the optimal nodes deployment parameters for the three transmissions. Energy consumption of the three transmissions are compared under optimal nodes deployment, which shows that CB based CMISO transmission consumes less energy than SISO and DSTBC based CMISO transmissions. Meanwhile, under optimal nodes deployment, the superiorities of CB based CMISO transmission over SISO and DSTBC based CMISO transmissions can be more obvious when path-loss-factor becomes low.

Cooperative transmission protocol in the relay network (릴레이 네트워크에서의 협업전송 프로토콜)

  • Xiang, Gao;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1046-1048
    • /
    • 2009
  • Cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

  • PDF

Cooperative Transmission Scheme for Mobile Satellite Broadcasting Systems (이동 위성 방송 시스템을 위한 협력적 전송 기법 연구)

  • Ahn, Do-Seob;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.890-899
    • /
    • 2009
  • One of major services for the next generation mobile satellite system will be multimedia broadcasting and multi-casting service(MBMS). An integrated satellite and terrestrial network can be considered to provide those services seamlessly and cooperatively. This paper presents efficient cooperative transmission architectures for integrated satellite and terrestrial network. First, an integrated satellite and terrestrial system architectures is introduced, and several cooperative transmission architectures for the integrated system are derived. Extensive performance simulation results reveal that the proposed architectures can improve the system performance and make an efficient transmission.

Bandwidth-Efficient Transmission Protocol for Cooperative MIMO: Design and Analysis (분산 다중 안테나 기반의 상호 협력 통신을 위한 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.418-425
    • /
    • 2008
  • In this paper, we propose two different types of cooperative transmission protocols, referred to as spatial multiplexing with receive diversity (SMRD), that are bandwidth-efficient. We show that the BER performance can be significantly improved with a proper design of SMRD protocol under the AF (Amplify-and-Forward) and the DF (Decode-and-Forward) modes of relaying, when there is no interference among all symbols transmitted in the same time slot. BER analysis and our simulation result show that the proposed transmission protocol achieves a significant gain over no-cooperation (direct transmission) without any bandwidth expansion.

A New Physical Layer Transmission Scheme for LPI and High Throughput in the Cooperative SC-FDMA System

  • Li, Yingshan;Wu, Chao;Sun, Dongyan;Xia, Junli;Ryu, Heung-Gyoon
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.457-463
    • /
    • 2013
  • In recent days, cooperative diversity and communication security become important research issues for wireless communications. In this paper, to achieve low probability of interception (LPI) and high throughput in the cooperative single-carrier frequency division multiple access (SC-FDMA) system, a new physical layer transmission scheme is proposed, where a new encryption algorithm is applied and adaptive modulation is further considered based on channel state information (CSI). By doing so, neither relay node nor eavesdropper can intercept the information signals transmitted from user terminal (UT). Simulation results show above new physical layer transmission scheme brings in high transmission safety and secrecy rate. Furthermore, by applying adaptive modulation and coding (AMC) technique according to CSI, transmission throughput can be increased significantly. Additionally, low peak-to-average power ratio (PAPR) characteristic can still be remained due to the uniform distribution of random coefficients used for encryption algorithm.

A Location-Aided Cooperative Transmission Method in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 위치도움 협력 전송 방법)

  • Son, Dong-Hwan;Lee, Joo-Sang;An, Beongku;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper, we propose location-aided cooperative routing protocol (LACARP) for supporting power saving and stable route lifetime in mobile ad-hoc wireless sensor networks. The main ideas and features of the proposed routing protocol are as follows. First, the definition of the area of route search using location-based information to support power saving transmission. Second, the expect zone-based establishment of routing route within the area of route search. Third, the cooperative-aided transmission method. In the operation of data transmission over the established rout the datas are transmitted via both the established route and cooperative route aided by neighbor nodes. The performance evaluation using OPNET(Optimized Network Engineering Tool) shows the LACARP can improve the packet delivery ratio and power saving transmission efficiently.

  • PDF

Improving Channel Capacity in Bidirectional Cooperative MIMO Relay Network

  • Niyizamwiyitira, Christine;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.956-958
    • /
    • 2010
  • The paper considers MIMO two-way scheme to optimize the end to end capacity in local wireless mesh network. The basic idea is to perform data transmission via intermediate cooperative nodes and cooperative relay therefore higher throughput can be achieved. Each node is equipped with multiple antennas, and has two time slots one for transmission (Tx) and the other is reception (Rx), which are arranged alternatively in the network. In the conventional SISO network, it takes at least four time slots to accomplish the function of two-way relay. Moreover, cooperative technique is used in order to enhance multiplexing of forward and backward streams.

  • PDF