• 제목/요약/키워드: cooperative relay networks

검색결과 145건 처리시간 0.025초

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.

A Generous Cooperative Routing Protocol for Vehicle-to-Vehicle Networks

  • Li, Xiaohui;Wang, Junfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5322-5342
    • /
    • 2016
  • In vehicle-to-vehicle (V2V) networks, where selfishness degrades node activity, countermeasures for collaboration enforcement must be provided to enable application of a sage and efficient network environment. Because vehicular networks feature both high mobility and various topologies, selfish behavior judgment and establishment of a stable routing protocol become intensely challenging. In this paper, a two-phase-based generous cooperative routing protocol (called GEC) is presented for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a packet forwarding watchdog and an average connection rate based on the multipath weight method are used, where evidence is gathered from different watchdogs. Then, multihop relay decisions are made using a generous cooperative algorithm based on game theory. Finally, through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging traffic. Specifically, it is proved that the GEC is theoretically subgame perfect. Simulation results show that for V2V networks with inherently selfish nodes, the proposed method isolates uncooperative vehicles and is capable of accommodating both the mobility and congestion circumstances by facilitating information dissemination and reducing end-to-end delay.

UWB 기반 Distributed MAC 시스템을 위한 SoQ 기반 협력 통신 프로토콜 설계 (Design of SoQ-based Cooperative Communication Protocol for UWB-based Distributed MAC/WUSB Systems)

  • 허경
    • 한국멀티미디어학회논문지
    • /
    • 제15권3호
    • /
    • pp.345-355
    • /
    • 2012
  • 본 논문에서는 UWB 기술 기반 WiMedia Distributed Medium Access Control (D-MAC) 무선 USB 표준 프로토콜에 적용할 수 있는 Satisfaction of QoS (SoQ) 기반 협력 통신 프로토콜을 제안한다. 이를 위해 UWB 링크 전송 속도와 QoS 척도에 따른 릴레이 노드 선정 알고리즘을 제안한다. 본 논문에서 제안하는 SoQ 기반 협력 통신 프로토콜은 분산적인 D-MAC 무선 USB 표준 기술과 호환성을 갖고, 각 디바이스에서 독립적으로 실행되는 SoQ 기반 Relay Node Selection (RNS) 기준에 따라 실행된다.

Wireless Ad-hoc Networks Using Cooperative Diversity-based Routing in Fading Channel

  • 김남수;안병구;김도현;이예훈
    • 한국통신학회논문지
    • /
    • 제33권2B호
    • /
    • pp.69-75
    • /
    • 2008
  • We propose new routing scheme, Cooperative Diversity-based Routing (CDR)which utilize the cooperative space diversity for power saving and for performance enhancement of wireless ad-hoc networks. The end-to-end performance of the proposed routing, CDR, is analyzed based on the Haenggi's link model. The improved performance is compared with Multi-hop Relay Routing (MRR) by analytical methods. When the required outage probability is $1{\times}10^{-3}$ at the destination node in ad-hoc networks with 7 nodes, we noticed that each node can save power consumption by 21.5 dB in average, by using our proposed CDR compared to MRR.

Performance Analysis of Coded Cooperation Protocol with Reactive and Proactive Relay Selection

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제11권2호
    • /
    • pp.133-142
    • /
    • 2011
  • Coded cooperation that integrates channel coding in cooperative transmission has gained a great deal of interest in wireless relay networks. The performance analysis of coded cooperation protocol with multiple relays is investigated in this paper. We show that the diversity order achieved by the coded cooperation in a multi-relay wireless network is not only dependent on the number of cooperating relays but is also dependent on the code-rate of the system. We derive the code-rate bound, which is required to achieve the full diversity gain of the order of cooperating nodes. The code-rate required to achieve full diversity is a linearly decreasing function of the number of available relays in the network. We show that the instantaneous channel state information (CSI)-based relay selection can effectively alleviate this code-rate bound. Analysis shows that the coded cooperation with instantaneous CSI-based relay selection can achieve the full diversity, for an arbitrary number of relays, with a fixed code-rate. Finally, we develop tight upper bounds for the bit error rate (BER) and frame error rate (FER) of the relay selection based on coded cooperation under a Rayleigh fading environment. The analytical upper bounds are verified with simulation results.

무선 센서 네트워크에서 1-2-1 협력 프로토콜에 관한 연구 (Performance Analysis of 1-2-1 Cooperative Protocol in Wireless Sensor Networks)

  • 최대규;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.113-119
    • /
    • 2008
  • 기존의 1-1-1 협력 프로토콜은 멀티 홉이 가지고 있는 경로손실감소 이득과 함께 MIMO와 동일한 공간 다이버시티를 제공한다. 이를 통해 싱글 홈, 멀티 홉보다 뛰어난 정보의 신뢰도 및 에너지 소비 감소를 얻을 수 있다. 하지만 기존의 1-1-1 협력 프로토콜은 단일의 협력 중계기를 사용하므로 경로손실감소 이득과 다이버시티 이득 계수가 2로 제한되어 있다. 따라서 본 논문에서는 두개의 협력 중계기 R1, R2를 사용한 1-2-1 협력 프로토콜을 제안한다. 1-2-1 협력 프로토콜은 경로손실감소 이득을 높이고 계수가 3인 다이버시티 이득을 얻는다. 또한, 협력 중계가 R2에서도 계수가 2인 다이버시티 이득을 얻을 수 있다. 협력 중계기는 DF (Decode and Forward)와 DR (Decode and Reencode) 방식을 사용하여 1-2-1 DF 또는 DR 협력 프로토콜을 형성하고, 클러스터링 기반의 무선 센서 네트워크 (WSNs)에 적용한다. 제안한 프로토콜의 성능평가를 위해 레일리 페이딩과 AWGN (Additive White Gaussian Noise) 채널이 합해진 채널에서 모의실험을 한다.

  • PDF

A Game Theoretic Study of Energy Efficient Cooperative Wireless Networks

  • Brown, Donald Richard III;Fazel, Fatemeh
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.266-276
    • /
    • 2011
  • In wireless networks, it is well-known that intermediate nodes can be used as cooperative relays to reduce the transmission energy required to reliably deliver a message to an intended destination. When the network is under a central authority, energy allocations and cooperative pairings can be assigned to optimize the overall energy efficiency of the network. In networks with autonomous selfish nodes, however, nodes may not be willing to expend energy to relay messages for others. This problem has been previously addressed through the development of extrinsic incentive mechanisms, e.g., virtual currency, or the insertion of altruistic nodes in the network to enforce cooperative behavior. This paper considers the problem of how selfish nodes can decide on an efficient energy allocation and endogenously form cooperative partnerships in wireless networks without extrinsic incentive mechanisms or altruistic nodes. Using tools from both cooperative and non-cooperative game theory, the three main contributions of this paper are (i) the development of Pareto-efficient cooperative energy allocations that can be agreed upon by selfish nodes, based on axiomatic bargaining techniques, (ii) the development of necessary and sufficient conditions under which "natural" cooperation is possible in systems with fading and non-fading channels without extrinsic incentive mechanisms or altruistic nodes, and (iii) the development of techniques to endogenously form cooperative partnerships without central control. Numerical results with orthogonal amplify-and-forward cooperation are also provided to quantify the energy efficiency of a wireless network with sources selfishly allocating transmission/relaying energy and endogenously forming cooperative partnerships with respect to a network with centrally optimized energy allocations and pairing assignments.

High Capacity Relay Protocols for Wireless Networks

  • Fan, Yijia;Krikidis, Ioannis;Wang, Chao;Thompson, John S.;Poor, H. Vincent
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.196-206
    • /
    • 2009
  • Over the last five years, relaying or multihop techniques have been intensively researched as means for potentially improving link performance of wireless networks. However, the data rates of relays are often limited because they cannot transmit and receive on the same frequency simultaneously. This limitation has come to the attention of researchers, and recently a number of relay techniques have been proposed specifically to improve the data efficiency of relaying protocols. This paper surveys transmission protocols that employ first single relays, then multiple relays and finally multiple antenna relays. A common feature of these techniques is that novel signal processing techniques are required in the relay network to support increased data rates. This paper presents results and discussion that highlight the advantages of these approaches.

Cooperative Relaying with Interference Cancellation for Secondary Spectrum Access

  • Dai, Zeyang;Liu, Jian;Long, Keping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2455-2472
    • /
    • 2012
  • Although underlay spectrum sharing has been shown as a promising technique to promote the spectrum utilization in cognitive radio networks (CRNs), it may suffer bad secondary performance due to the strict power constraints imposed at secondary systems and the interference from primary systems. In this paper, we propose a two-phase based cooperative transmission protocol with the interference cancellation (IC) and best-relay selection to improve the secondary performance in underlay models under stringent power constraints while ensuring the primary quality-of-service (QoS). In the proposed protocol, IC is employed at both the secondary relays and the secondary destination, where the IC-based best-relay selection and cooperative relaying schemes are well developed to reduce the interference from primary systems. The closed-form expression of secondary outage probability is derived for the proposed protocol over Rayleigh fading channels. Simulation results show that, with a guaranteed primary outage probability, the proposed protocol can achieve not only lower secondary outage probability but also higher secondary diversity order than the traditional underlay case.

Achieving Maximum System Throughput with Cooperative Relaying: A Case Study of IEEE 802.16j Multi-Hop Relay

  • Ryu, Hyun-Seok;Lee, Hee-Soo;Ahn, Jae-Young;Kang, Chung-Gu
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.466-474
    • /
    • 2010
  • Various types of cooperative relaying (CR) schemes exhibit different levels of throughput and outage performance because of their inherent trade-off between diversity gain and opportunity cost; in other words, the overhead that is associated with cooperation. This article attempts to answer whether cooperative communication is beneficial or not from the system-level viewpoint and furthermore, if it is, how its average throughput can be maximized while maintaining the target outage rate. In order to improve throughput at the required outage performance, we propose a unified selection criterion to deal with different levels of combining gain and opportunity cost associated with each scheme, which allows for the employment of different CR schemes for various positions of the mobile station. Our system-level simulation results for an IEEE 802.16j multi-hop relay confirm the varying levels of trade-offs among different CR schemes and furthermore, show that CR will be a useful means of maximizing the average throughput for a multi-hop relay system as long as each type of the cooperating scheme is carefully selected, depending on the position of the mobile stations.