• Title/Summary/Keyword: convex points

Search Result 204, Processing Time 0.023 seconds

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF

NULLITY OF THE LEVI-FORM AND THE ASSOCIATED SUBVARIETIES FOR PSEUDO-CONVEX CR STRUCTURES OF HYPERSURFACE TYPE

  • Chung, Kuerak;Han, Chong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.169-178
    • /
    • 2019
  • Let $M^{2n+1}$, $n{\geq}1$, be a smooth manifold with a pseudoconvex integrable CR structure of hypersurface type. We consider a sequence of CR invariant subsets $M={\mathcal{S}}_0{\supset}{\mathcal{S}}_1{\supset}{\cdots}{\supset}{\mathcal{S}}_n$, where $S_q$ is the set of points where the Levi-form has nullity ${\geq}q$. We prove that ${\mathcal{S}}{_q}^{\prime}s$ are locally given as common zero sets of the coefficients $A_j$, $j=0,1,{\ldots},q-1$, of the characteristic polynomial of the Levi-form. Some sufficient conditions for local existence of complex submanifolds are presented in terms of the coefficients $A_j$.

A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH AL-OBOUDI OPERATOR INVOLVING CONVOLUTION

  • Sangle, N.D.;Metkari, A.N.;Joshi, S.B.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.887-902
    • /
    • 2021
  • In this paper, we have introduced a generalized class SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼), i ∈ {0, 1} of harmonic univalent functions in unit disc 𝕌, a sufficient coefficient condition for the normalized harmonic function in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). We further obtained extreme points, bounds and a covering result for the class 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). Also, show that this class is closed under convolution and convex combination. While proving our results, certain conditions related to the coefficients of 𝜙 and 𝜓 are considered, which lead to various well-known results.

CONSTRUCTION OF A SOLUTION OF SPLIT EQUALITY VARIATIONAL INEQUALITY PROBLEM FOR PSEUDOMONOTONE MAPPINGS IN BANACH SPACES

  • Wega, Getahun Bekele
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.595-619
    • /
    • 2022
  • The purpose of this paper is to introduce an iterative algorithm for approximating a solution of split equality variational inequality problem for pseudomonotone mappings in the setting of Banach spaces. Under certain conditions, we prove a strong convergence theorem for the iterative scheme produced by the method in real reflexive Banach spaces. The assumption that the mappings are uniformly continuous and sequentially weakly continuous on bounded subsets of Banach spaces are dispensed with. In addition, we present an application of our main results to find solutions of split equality minimum point problems for convex functions in real reflexive Banach spaces. Finally, we provide a numerical example which supports our main result. Our results improve and generalize many of the results in the literature.

Accuracy Analysis of Aerial Photogrammetry for Digital Cadastral Map (수치지적도화를 위한 항공사진측량의 정확도 분석)

  • Yun, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1191-1197
    • /
    • 2022
  • Recently, many studies have been conducted to utilize the digital aerial photogrammetry method in the field of cadastral surveying. The representative models of digital cameras currently used for aerial photogrammetry are classified into line-type and convex-type cameras, so the representative models were selected and analyzed. The purpose of this study was to analyze whether the accuracy suggested by the cadastral survey enforcement rules was satisfied by comparing the orthogonal and ortho image performance. As a result, there were some representative false points that exceeded the acceptable range, but the results extracted from most of the images were shown to satisfy the acceptable range. Therefore, it can be said that the application of digital aerial photogrammetry to the cadastral field in the technical aspect has sufficient potential.

A LONGITUDINAL STUDY OF SOFT-TISSUE FACIAL PROFILE CHANGES IN KOREAN CHILDREN (한국인아동의 연조직측모의 성장변화에 관한 누년적 연구)

  • Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.19 no.1 s.27
    • /
    • pp.7-20
    • /
    • 1989
  • A serial cephalometric study was undertaken to define the growth of the soft tissue facial profile in Korean children. The sample was composed of 25 males and 15 females for whom yearly cephalometric records were taken from the ages of 6 to 13 years. From the tracings, points on skeletal and soft tissue profiles were located and recorded on magnetic tape utilizing a Calcomp Talos RP660 X-Y digitizer. Linear and angular measurements of soft tissues were made directly from tape in a Cyber 174-16 computer after cephalometric enlargement had been corrected. A statistical evaluation was made of the data and the average profile diagrams in male and female were described by a Calcomp 960 pen plotter. On the basis of the findings of this study, the following trends were established. 1. The most prominent growth in soft tissue facial profile thickness was the nose and the least was the forehead. 2. The general growth direction of the soft facial tissue to the cranium described the downward and forward. 3. The degree of soft tissue facial convexity was decidely more than that exhibited earlier in life even though the soft tissue chin had protruded to the cranium. 4. The measurements indicated a general tendency for males to have larger nose and more convex and long soft tissue facial profile than did females. 5. Males showed significantly more growth than females in base of the upper lip and height of the upper anterior facial profile. 6. There was a difference between males and females in the rates of soft tissue facial profile growth. 7. Korean children showed less convex in the soft tissue profile convexity than did American children.

  • PDF

Constant Time RMESH Algorithms for Polygon Intersection Problems (다각형 교차 문제를 위한 상수 시간 재구성메쉬 알고리즘)

  • Kim, Su-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1344-1352
    • /
    • 1999
  • 본 논문에서는 두 단순 다각형의 교차 영역을 구하는 문제를 재구성메쉬(RMESH) 상에서 상수 시간에 해결하는 두 개의 알고리즘을 제시한다. 먼저, 두 다각형이 모두 볼록 다각형일 때, N$\times$N RMESH에서 상수 시간에 교차 영역을 구하는 알고리즘을 제시한다, 여기서 N은 두 다각형의 정점의 개수의 합이다. 그리고, 두 일반적인 단순 다각형의 교차 영역을 구하는 문제에 대해서 (N+T)$\times$(N+T)2 RMESH에서 수행되는 상수 시간 알고리즘을 제시한다, 여기서 T는 최악의 경우 두 다각형의 경계선 상의 교차점의 개수로서 두 다각형의 정점의 개수가 각각 n과 m일 때 n.m에 해당한다. 두 다각형 중 하나가 볼록 다각형인 경우는 T = 2.max{n, m}이다. 이 알고리즘은 두 다각형의 모든 교차 영역 조각들을 구한 후 RMESH의 0번째 열에 차례로 배치해 준다. Abstract In this paper, we consider two constant time algorithms for polygon intersection problems on a reconfigurable mesh(in short, RMESH). First, we present a constant time algorithm for computing the intersection of two convex polygons on an N$\times$N RMESH, where N is the total number of vertices in both polygons. Second, we present a constant time algorithm for computing the intersection of two simple polygons on an (N+T)$\times$(N+T)2 RMESH, where T is the worstcase number of intersection points between the boundaries of them. T = n m, where n and m are the numbers of vertices of two polygons respectively. If either of them is convex, then T = 2 max{n,m}. The algorithm computes the intersection of them, and then arranges each intersection component onto the 0-th column of the mesh.

An Algorithm for the Singly Linearly Constrained Concave Minimization Problem with Upper Convergent Bounded Variables (상한 융합 변수를 갖는 단선형제약 오목함수 최소화 문제의 해법)

  • Oh, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.213-219
    • /
    • 2016
  • This paper presents a branch-and-bound algorithm for solving the concave minimization problem with upper bounded variables whose single constraint is linear. The algorithm uses simplex as partition element. Because the convex envelope which most tightly underestimates the concave function on the simplex is uniquely determined by solving the related linear equations. Every branching process generates two subsimplices one lower dimensional than the candidate simplex by adding 0 and upper bound constraints. Subsequently the feasible points are partitioned into two sets. During the bounding process, the linear programming problems defined over subsimplices are minimized to calculate the lower bound and to update the incumbent. Consequently the simplices which do certainly not contain the global minimum are excluded from consideration. The major advantage of the algorithm is that the subproblems are defined on the one less dimensinal space. It means that the amount of work required for the subproblem decreases whenever the branching occurs. Our approach can be applied to solving the concave minimization problems under knapsack type constraints.

An Improved Feature Extraction Technique of Asterias Amurensis using 6-Directional Scanning and Centers of Region (6-방향 스캐닝과 영역 중심점을 이용한 아무르불가사리의 개선된 특징 추출 기법)

  • Shin, Hyun-Deok;Chu, Ran-Heui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • Korea has developed coastal farming industry due to the environmental characteristics that its three sides are surrounded by sea. The damage of coastal farming industry caused by Asterias Amurensis with very strong reproductive rate and predaciousness has increased sharply every year. Moreover, Asterias Amurensis preys on living fish and shellfish and so the damage of fishermen is vern greater. In this paper, a method is proposed to extract effectively the features from the image of Asterias Amurensis acquired in the water. Because the proposed method extracts convex features using 6-directional scanning, it selects a fewer number of feature candidates than the conventional one. In addition, after selecting candidate concave points using the extracted convex features and centers of region, the final concave features are extracted. Due to the features of the starfish which lives in groups, individuals of the starfish in the input image are concentrated. Thus, it is significant to minimize the number of feature candidates extracted from the input image. The experimental results indicate an improvement of the proposed feature extraction method over the conventional one as evidenced by the fact that the feature extract was 88 % of the feature candidates.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.