• Title/Summary/Keyword: convection-diffusion equation

Search Result 66, Processing Time 0.018 seconds

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

A MULTIGRID METHOD FOR AN OPTIMAL CONTROL PROBLEM OF A DIFFUSION-CONVECTION EQUATION

  • Baek, Hun-Ki;Kim, Sang-Dong;Lee, Hyung-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.83-100
    • /
    • 2010
  • In this article, an optimal control problem associated with convection-diffusion equation is considered. Using Lagrange multiplier, the optimality system is obtained. The derived optimal system becomes coupled, non-symmetric partial differential equations. For discretizations and implementations, the finite element multigrid V-cycle is employed. The convergence analysis of finite element multigrid methods for the derived optimal system is shown. Some numerical simulations are performed.

An Analytical Calculation of the Transport of the Solute Dumped in a Homogeneous Open Sea with Mean and Oscillatory Flows

  • Lee Ho Jin;Jung Kyung Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • An analytical model for predicting the convection-diffusion of solute dumped in a homogeneous open sea of constant water depth has been developed in a time-integral form. The model incorporates spatially uniform, uni-directional, mean and oscillatory currents for horizontal convection, the settling velocity for the vertical convection, and the anisotropic turbulent diffusion. Two transformations were introduced to reduce the convection-diffusion equation to the Fickian type diffusion equation, and then the Galerkin method was then applied via the expansion of eigenfunctions over the water column derived from the Sturm-Liouville problem. A series of calculations has been performed to demonstrate the applicability of the model.

NON-ITERATIVE DOMAIN DECOMPOSITION METHOD FOR THE CONVECTION-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • This paper proposes a numerical method based on domain decomposition to find approximate solutions for one-dimensional convection-diffusion equations with Neumann boundary conditions. First, the equations are transformed into convection-diffusion equations with Dirichlet conditions. Second, the author introduces the Prediction/Correction Domain Decomposition (PCDD) method and estimates errors for the interface prediction scheme, interior scheme, and correction scheme using known error estimations. Finally, the author compares the PCDD algorithm with the fully explicit scheme (FES) and the fully implicit scheme (FIS) using three examples. In comparison to FES and FIS, the proposed PCDD algorithm demonstrates good results.

FINITE DIFFERENCE SCHEMES FOR A GENERALIZED CALCIUM DIFFUSION EQUATION

  • Choo, Sang-Mok;Lee, Nam-Yong
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • Finite difference schemes are considered for a $Ca^{2+}$ diffusion equations with damping and convection terms, which describe $Ca^{2+}$ buffering by using stationary and mobile buffers. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained using the extended Lax-Richtmyer equivalence theorem.

  • PDF

NUMERICAL COMPARISON OF WENO TYPE SCHEMES TO THE SIMULATIONS OF THIN FILMS

  • Kang, Myungjoo;Kim, Chang Ho;Ha, Youngsoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.193-204
    • /
    • 2012
  • This paper is comparing numerical schemes for a differential equation with convection and fourth-order diffusion. Our model equation is $h_t+(h^2-h^3)_x=-(h^3h_{xxx})_x$, which arises in the context of thin film flow driven the competing effects of an induced surface tension gradient and gravity. These films arise in thin coating flows and are of great technical and scientific interest. Here we focus on the several numerical methods to apply the model equation and the comparison and analysis of the numerical results. The convection terms are treated with well known WENO methods and the diffusion term is treated implicitly. The diffusion and convection schemes are combined using a fractional step-splitting method.

APPLICATION OF HP-DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS TO THE ROTATING DISK ELECTRODE PROBLEMS IN ELECTROCHEMISTRY

  • Okuonghae Daniel
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.1-20
    • /
    • 2006
  • This paper presents the interior penalty discontinuous Galerkin finite element methods (DGFEM) for solving the rotating disk electrode problems in electrochemistry. We present results for the simple E reaction mechanism (convection-diffusion equations), the EC' reaction mechanism (reaction-convection-diffusion equation) and the ECE and $EC_2E$ reaction mechanisms (linear and nonlinear systems of reaction-convection-diffusion equations, respectively). All problems will be in one dimension.

A Comparative Study of Efficient Transient Analysis Algorithm for Parabolic Equations (Parabolic 방정식의 효율적인 시간해석 알고리즘에 대한 비교연구)

  • 최창근;이은진;유원진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.68-74
    • /
    • 1998
  • A finite element analysis for physical phenomenon which are governed by parabolic equation, has some inefficiencies caused by much computational time and large storage space. In this paper, a comparative study is performed to suggest the best efficient transient analysis algorithms for parabolic equations. First, the general finite element analysis techniques are summarized in views of formulation procedures, treatments of convection terms. and time stepping methods. Results of several combinations applied to one dimensional convection-diffusion equation and Burger equation are represented and compared using some criteria such as accuracy, stability, and computational time. Through the results, some guidelines to select a algorithm for solving parabolic equations are proposed for diffusion dominant and convection dominant cases. Finally applicability of two dimensional extension of the result is also discussed.

  • PDF

Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.19-29
    • /
    • 1982
  • Galerkin's finite element method is applied to a two-dimensional heat convection-diffusion problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both bearing pad and the collar are treated together, with proper juncture conditions on the interface boundaries. it has been known that a numerical instability arises when the classical Galerkin's method, which is equivalent to a centered difference approximation, is applied to a parabolic-type partial differential equation. Probably the simplest remedy for this instability is to use a one-sided finite difference formula for the first derivative term in the finite difference method. However, in the present coupled heat convection-diffusion problem in which the governing equation is parabolized in a subdomain(Lubricant), uniformly stable numerical solutions for a wide range of the Peclet number are obtained in the numerical test based on Galerkin's classical finite element method. In the present numerical convergence errors in several error norms are presented in the first model problem. Additional numerical results for a more realistic bearing lubrication problem are presented for a second numerical model.

  • PDF