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An analytical model for predicting the convection-diffusion of solute dumped in a homogeneous
open sea of constant water depth has been developed in a time-integral form. The model
incorporates spatially uniform, uni-directional, mean and oscillatory currents for horizontal
convection, the settling velocity for the vertical convection, and the anisotropic turbulent diffusion.
Two transformations were introduced to reduce the convection-diffusion equation to the Fickian
type diffusion equation, and then the Galerkin method was then applied via the expansion
of eigenfunctions over the water column derived from the Sturm-Liouville problem. A series
of calculations has been performed to demonstrate the applicability of the model.
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Introduction

The problem of predicting the transport of solutes
such as dissolved toxic matters, radionuclides and
suspended sediments on the basis of a convection-
diffusion equation appear in various disciplines such
as hydrology, environmental and chemical engineer-
ing and oceanography. Since the basic equation is
nonlinear, numerical methods are usually adopted as
a predictive tool. A very limited number of analytical
solutions are available in idealized conditions; the
depth is spatially constant, the convection velocity
and eddy diffusivity are constant or take simple
functional forms (Prakash, 1977; Smith, 1982; Wilson
and Okubo, 1978; Yasuda, 1988; Zoppou and Knight,
1997). For some collection of solutions, see Noye
(1987). There is obviously a continuing need to
develop analytical solutions of the convection-diffu-
sion equation because of its fundamental and practical
importance; analytical solutions are valuable not only
for the better understanding on the transport processes
but the verification of the numerical schemes.

In this study an analytical solution of time-integral
form has been derived to predict the transport of
solutes released at the sea surface in a homogeneous
open sea, keeping in mind the application to dumping
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of dredged sediments, industrial wastes and feed
stuffs, vice versa. In detail, we have combined the
horizontally two-dimensional solution, derived by
Jung et al. (2003a) for the build-up of the heat field
due to a point source in coastal regions with an
oscillatory cross-flow, with the vertically one-dimen-
sional solution, derived by Jung et al. (2003b), for
the determination of local distribution of suspended
sediment. The model incorporates spatially uniform,
uni-directional horizontal convection, anisotropic
horizontal diffusion, the vertical convection due to
settling velocity, and the vertical diffusion. The pre-
sence of a point source at the sea surface is assumed
as the dumping rate of solute. No net flux condition
is applied at the sea surface (except for the source
point), while the downward net flux is considered
through the introduction of a depositional velocity.
In the model by Yasuda (1988) a finite water depth
was assumed but the horizontal diffusion was
neglected and no net flux condition was applied at
the sea surface and sea bottom boundaries. The
solution is sought as a salient feature of this study
by applying the Galerkin method in time domain
via the eigenfunction expansion over the water
column. In applications the direct time-integration
of the solution is made rather than the calculation
of Arie's moments (1956) to investigate the solution
behaviors. A series of calculations are carried out
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to examine the contribution of settling velocity, mean
and oscillatory currents along with the role of
longitudinal turbulent diffusion to the determination
of the solute distribution.

Basic equation and Solution

Basic form of convection-diffusion equation

We consider a horizontally infinite ocean of constant
water depth with a point source at the sea surface.
The ambiznt flow is assumed to compose of
spatially-ir variant mean and oscillatory currents in
the x-direction. A non-conservative form of the
convection-diffusion (transport) equation for the
solute transport may be written as:
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where,
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In the foregoing equations ¢ is time, x, y and
(zero at the sea surface and -/ at the sea bottom)
are the Catesian coordinates, T is the concentration
of solute, u is the -directed ambient flow velocity,
w, is the settling velocity of solute (assumed to be
negative), k., k/B are the horizontal diffusion
coefficients, /8 is the coefficient for non-isotropic
diffusion, % is the vertical diffusion coefficient, u,
denotes m:zan current, um. i the amplitude of the
oscillatory current, w (=27/Tp) is the angular fre-
quency of the oscillatory current (7» is the period).
The ambient flow varies as a function of time only
and the difusion coefficients are all assumed to be
time and space-invariant.

Assuming that the source is located at the origin
({x,y,2=(0,0,0)), boundary conditions at the water
surface (z==0) and sea bottom (z=-h) are given by

— W, T(0) = kz(%)“:aau, v.2),

—w1-n=r(4L) =v, 7m0 (3)

where Fy is the solute influx at the sea surface,
vq is the depositional velocity and 0(x,p,z) is the
delta funct on. Subscripts, -4 and 0, denote the levels
derivatives are defined.

Transformation to a simple diffusion equation
As a first step of the solution procedure, two
transformetions are introduced as follows:

2
T(x,v,2,0=C(x,9,2,1) - exp[% z—% t] 6]
and
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where C(x,y,z,f) is a new concentration variable. With
the two transformations, Equation (1) reduces to a
simple diffusion equation.
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The boundary conditions given in Equation (3)
reduce to
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where,
wZ
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Galerkin expansion over the vertical space
domain

We seek a solution for the diffusion equation (6)
in the form,

Cl, 3,2, 0= 30 C (.3, /42) 9)

where ¢ (x,v.t), »=1,2,-, m, are the unknown coeffi-
cients, f(z), r= -,m, are depth-varying basis
functions, and m is the number of basis functions
used. A Galerkin-eigenfunction technique used by
Heaps (1972), Davies (1980) and Jung (1989) for
the vertical variation of horizontal currents is applied
to derive the series solution. Detailed procedure is
described below.

Taking first an inner product with f; in Equation
(6) and applying integration by part twice to the
vertical diffusion term (2nd term on the right hand
side) gives,
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Incorporating the boundary conditions given as (7)

and (8) and substituting the expansion given in (9)
lead to,

&f,
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dz (10)
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Choosing f. as a set of solutions (eigenfunctions)
deduced from the well-known Sturm-Liouville sys-
tem,

2
kz‘:;fZ +A1,=0, (r=1,2,--m) (12)

subject to,
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then the 3rd and 4th terms of the right-hand side
of Equation (11) are eliminated and we get
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where A, is the real-valued r-th eigenvalue and,

(D,=1/f_0hf,2dz (15)

In deriving Equation (14) the well-known ortho-
gonal condition of the eigenfunctions is used. That
is,

[ fhedz=0 if ek (16)

Eigenfunctions and eigenvalues determined from
equations (12) and (13) are:

f(z)—cosa,z+(2k )sma,z A,=k,a>
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where ¢, satisfies the following transcendental equa-
tion.

v, cosa,h:{(%-kvd) e +kza,}sma h (18)

In case w,=uv,=0, r-th eigenfunction and eigenvalue
are given by,

fr=rcos(W A Jk,2), A, =k, (r—1)2 2%/ h? (19)

Solutions in terms of original variables

Assuming that the solute field is initially at zero
throughout the water column, an appropriate solution
of Equation (14) to an instantaneous release of solute
dumped at the origin (0,0) at time ¢=r might be

C,(x,y,zv‘)=fn_L/;T((;z—dj_)'-exp[—/i,(t—z')]JeS (20)

where,

2 2 2
IES:exp[——ik—j(—t(_é}yg)—], FST(T)ZFSGXD[%,@ZT] (21)

The convolution integral can be applied for the
continuous release of solute started from ¢#=0. That
is,

Clayvt)= qu—4ﬂk(z‘ exp[M€ ]
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Summing up the contribution of all eigenfunctions
using Equation (9) then gives
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Substituting the relation between the original and
transformed coordinates, that is,

X=X— t,,+ U, |0 (cOS wt— cOS wT) (24)

and substituting equation (23) into equation (4) finally
give,
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We note that in case of w=v~0, 4,=0, and fi=1
Correspondingly, @,=1/h and @=2/h for r=2. There-
fore,

BF,
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which is identical to the form shown in Carslaw and
Jaeger (1959) in case the turbulent diffusion is
assumed to be isotropic (6=1) and the oscillatory
current is absent.
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Results

A total of three sets of calculations have been
performed; the first set is the calculations in stagnant
water, the second set is the calculations with mean
flow condi:ion and thee final set includes the calcula-
tions with mean and oscillatory flows. Throughout
the calculations the water depth is assumed to be
70 m and the value of m is taken as 50 k(=k. B’
is set to bz ten times smaller than A’ by choosing

A simple mid-ordinate method has been used to
evaluate the integral (25). Calculations have been
continued >ver a month with source strength Fi=100
kg/mz/s. The time increment is approximated to be
a finite value, 4z, chosen as 7p/1800 seconds. Results
are the solute concentrations on the x-z cross-section
on the side of positive x axis passing through the
source po nt.

Calculations in stagnant water

To get an idea on the role of the settling velocity
and the vertical eddy diffusion, calculations denoted
by Cal-S1 to Cal-S4 have been performed in the
absence of the horizontal convection. In these calcula-
tions the horizontal diffusion is set to k=0.2 m/s.

Fig. 1 shows the cross- sectronal distribution of
solute computed with £=0.05 m’/s (Cal-S1) and
k=0.0005 m*/s (Cal-S2). The settling velocity w,=
-4x10” nys and the depositional velocity ve=2x107
m/s (that i3, half of the settling velocity as in Prandle,
1997) has been used.
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Fig. 1. Concentration of solute computed in the absence
of horizor tal convection. Upper panel: £~=0.05 m s,
Lower paqel: £=0.0005 m ’/s.

It is secn that a core of high concentration is formed
near the source point when the vertical mixing is
significan:ly suppressed, while a vertically well-

mixed feature is formed when the vertical mixing
is intense. Negative values of concentration, although
it is not clearly shown in the figures, appear below
the source point, which is known to be Gibbs
phenomenon.

Fig. 2 shows the cross-sectional drstrrbutron of
solute cornputed with the we=-4x10"° m/s (Cal-S3)
and -4x10™ m/s (Cal-S4). The depositional velocities
have been again set to be half of each value of the
settling velocity.
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Fig. 2 Concentrations of solute computed in the absence
of horizontal convection. Upper panel: w=-4x10"° m/s,
Lower panel: wy=-4x10" m/s.

It is noted that there is remarkable change in the
distribution patterns. A horizontal diffusive process
becomes pronounced when a small value of settling
velocity is used, revealing a vertically well-mixed
structure except for the core region. When the settling
velocity is high, solute rapidly falls down to the
bottom, forming a concentration field with a narrow
band. It is expected that the concentration near the
bottom tends to increases in the absence of the de-
positional velocity, that is, in case of no flux condition
used by previous workers (for example, Yasuda,
1988).

Calculations in the presence of mean current
Three calculations denoted by Cal-M1 to Cal-M3
have been carried out in the presence of the horizontal
convection by the mean current In Cal-M1 u,=0.02
m/s is used with k£=0.2 m%s, in Cal-M2 the mean
current is same as Cal-M1 but the horizontal diffusion
is reduced by one order (#,=0.02 m/s with k=0.02
m’s). And in Cal-M3 u,=0.2 m/s is used with 4£=0.2
m’/s. In these calculations the settling and depositional
velocities used are same as in Cal-S1 and Cal-S2
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(w=-4x10" m/s and v4=2%10" m/s).

We can clearly see in Fig. 3 that the solute is
transported in the mean flow direction. It seems that
the concentration inversely decreases as the distance
from the source point increases. From the comparison
of Cal-M1 and Cal-M2, it is seen that the overall
patterns are more or less similar, but the concentration
including the core region is increased as the horizontal
diffusion is reduced. It is interesting to note that
the main axis of the transport is formed with an
angle to the horizontal level. This attributes to the
presence of convective velocity. Consequently, con-
tours reveal the pattern reducing near the sea surface.
In the presence of large mean horizontal convective
velocity (Cal-M3), the solute evidently remains near
the sea surface. No wiggles have been noted in the
solution except for the appearance of negative oscilla-
tions below the core region.
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Fig. 3 Concentrations of solute computed in the
presence of mean currents. Upper panel: u,~0.02 m/s
and k¢ 02m/s Middle panel: u,=0.02 m/s and
k=0.02 m*/s, Lower panel: u,=0.2m/s and £=0.2
m’/s.

Calculations in the presence of mean and oscilla-
tory flows

Three calculations denoted by Cal-T1 to Cal-T3
have been carried out in the presence of the horizontal
convection via the mean and oscillatory currents. In
these calculations u,, is set to 0.02 m/s, and the settlin,
and the depositional velocity are set to w=-4x10"

m/s and v~2x10" m/s, respectively. In Cal-T1 tma=
0.2 m/s is used with &£=0.2 m’/s, in Cal-T2 tmax=0.2
m/s with k=2 mz/s, and in Cal-T3 #n=0.4 m/s with
k=2 m%s. Results shown in Fig. 4 are cross-sectional
concentrations when the excursion in the x-direction
reaches its maximum (that is, just at the time when
the oscillatory current changes signs to the negative
x-direction).

It is noted that Cal-T1 gives a very comphcated
pattern; the wiggles are pronounced and an unrealistic
rise of concentration appears in an isolated form near
the tidal excursion distance. Although results are not
shown here, the wiggles in the result of Cal-T1 is
still alive even with m=100. It has been found that
use of a relatively high value of & almost eliminates
the pattern (Cal-T2). However, with the use of
increased umax the concentration rise in an isolated
form reappears (Cal-T3). In fact, this pattern has been
previously noted in the depth-averaged two-dimen-
sional solution derived by Jung et al (2003a) when
the tidal convection dominates over the dispersion
process. The longitudinal diffusion should be suffi-
ciently large to get physically realistic features.
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Fig. 4 Concentration computed in the presence of mean
and oscillatory flows with um‘O 02 m/s. Upper panel:
Umax=0.2 m/s and k =0.2 m’/s, Middle panel: mu=0.2
m/s and kx 2.0 m’/s, Lower panel: umy=0.4 m/s and
k=2.0 m’/s.

Discussion
By adopting the approaches developed by Jung
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et al. (2003a,b), an analytical model for predicting
the convection-diffusion of solute dumped in a homo-
gencous open sea of constant water depth has been
developed in a time-integral form. The model in-
corporates spatially uniform, uni-directional, mean
and oscillatory currents for horizontal convection,
the settling. velocity for the vertical convection and
the anisotiopic horizontal turbulent diffusion. The
convection-diffusion equation has been reduced to
Fickian type diffusion equation and then the Galerkin
method is then applied via the expansion of eigen-
functions over the water column derived from the
well-known Sturm-Liouville system.

A series of calculations has been performed to
demonstrat: the applicability of the model, including
the calculetions in stagnant water, the calculations
with mean water flow, and the calculations with mean
and oscillatory flows.

In the course of sensitivity calculations it has been
found that the trickiest problem is to define the hori-
zontal and the vertical eddy diffusivity coefficients,
particularly in the presence of the oscillatory flow.
The wiggles are pronounced in the concentration field
and an un-ealistic rise of concentration appears in
an isolated form near the tidal excursion distance
when the tidal convection dominates over the disper-
sion process. No spurious wiggles appear in the pre-
sence of mean current. More thorough comparison
with field and laboratory experiments are required
in the future but it might be needed to develop a
variable horizontal diffusion model in which the
coefficient increases downstream direction k=¢cux (u
is the velocity and x is the distance) as proposed
by Hunt (1999).
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