• Title/Summary/Keyword: controller design problem

Search Result 910, Processing Time 0.029 seconds

Decoupling Controller Design for H Performance Condition

  • Park, Tae-Dong;Choi, Goon-Ho;Cho, Yong-Seok;Park, Ki-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.874-882
    • /
    • 2011
  • The decoupling design for the one-degree-of-freedom controller system is treated within the $H_{\infty}$ framework. In the present study, we demonstrate that the $H_{\infty}$ performance problem in the decoupling design is reduced into interpolation problems on scalar functions. To guarantee the properness of decoupling controllers and the overall transfer matrix, the relative degree conditions on the interpolating scalar functions are derived. To find the interpolating functions with relative degree constraints, Nevanlinna-Pick algorithm with starting function constraint is utilized in the present study. An illustrative example is given to provide details regarding the solution.

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

HYBRID PID FLC using sliding Mode (슬라이딩 모드를 이용한 HYBRID PID형 퍼지제어기)

  • Moon, Jun-Ho;Cho, Jong-Hoon;Oh, Kwang-Hyun;Kim, Tae-Un;Nam, Moon-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.992-994
    • /
    • 1995
  • FLC has a good performance for complication system or unknown model by using human linguistic method but many part control design are based on expert knowledge or trial-error method and it is difficult to prove stability and robustness of controller. In this paper we improve this problem by setting fuzzy rules by dividing phase plane of error and rate of error change by switching surface. We can guarantee the stability in nonlinear system, and also in fuzzy PID type controller the complexity of controller design is increased by increasing the number of input variables and defining more range of operation if we want performance of more specific rules, thus we need to fine the method to decrease the number of control rules used in FLC design. In this paper the algorithm is validated by simulation using conventional FLC and proposed method.

  • PDF

Robust Finite-time Dissipative State Feedback Controller Design for Discrete-time Uncertain Singular Systems (이산시간 불확실 특이시스템의 유한시간 강인 산일성 상태궤환 제어기 설계)

  • Kim, Jong Hae;Oh, Do Chang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1598-1604
    • /
    • 2015
  • In this paper, we treat the problem of a robust finite-time dissipative state feedback controller design method for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for finite-time stability of discrete-time singular systems is derived. A finite-time dissipative state feedback controller design method satisfying finite-time stability and dissipativity is proposed by LMI(linear matrix inequality) technique on the basis of the obtained BRL. Moreover it is shown that the obtained condition can be extended into polytopic uncertain systems by proper manipulations. Finally, illustrative examples are given to show the applicability of the proposed method.

A study on the Sliding Surface design by using SVM(Support Vector Machines) (SVM을 이용한 새로운 슬라이딩 평면의 구성에 관한 연구)

  • Kim, Seong-Guk;Wang, Fa Guang;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1646-1647
    • /
    • 2007
  • In the conventional sliding mode control(SMC), the states of controlled systems are linearly dependent because of the characteristic of the sliding surface. This means that conventional SMC can not add its robustness to other control methods. To overcome this problem, a special sliding surface with additional dynamic states has been proposed. However the additional dynamic states make it difficult to design a controller because the order ofa controller becomes higher. So, in this paper, a novel sliding surface design method, which does not require any additional dynamic state, is proposed. The relationships between the states with desirable responses can be expressed by using SVM and included in a sliding mode dynamics. The robust optimal controller with the optimal performanceand the robustness of SMC is considered.

  • PDF

Corrective Control of Composite Asynchronous Sequential Machines in Parallel Connection (병렬 결합된 비동기 순차 머신을 위한 교정 제어)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.139-147
    • /
    • 2014
  • We address the problem of corrective control for two asynchronous sequential machines in parallel connection. Each asynchronous machine receives the same external input and shows independent state transition characteristics. We propose a novel control scheme in which only one corrective controller is employed so as to make the closed-loop system of each machine match the behavior of the corresponding reference model. Compared with the former method utilizing two corrective controllers, our scheme can reduce the controller size and computational load in controller design. We present the existence condition and design procedure for a state-feedback corrective controller under the assumption that the controlled machines are of input/state type. The design procedure for the proposed controller is described in an illustrative example.

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

Delay-dependent Fuzzy H Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 H제어기 설계)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.571-576
    • /
    • 2004
  • This paper presents a delay dependent fuzzy $H_{\infty}$ controller design method for delayed fuzzy dynamic systems. Using delay-dependent Lyapunov function, the global exponential stability and $H_{\infty}$ performance problem arc discussed. A sufficient conditions for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Power System Rotor Angle Stability Improvement via Coordinated Design of AVR, PSS2B, and TCSC-Based Damping Controller

  • Jannati, Jamil;Yazdaninejadi, Amin;Nazarpour, Daryush
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.341-350
    • /
    • 2016
  • The current study is dedicated to design a novel coordinated controller to effectively increase power system rotor angle stability. In doing so, the coordinated design of an AVR (automatic voltage regulator), PSS2B, and TCSC (thyristor controlled series capacitor)-based POD (power oscillation damping) controller is proposed. Although the recently employed coordination between a CPSS (conventional power system stabilizer) and a TCSC-based POD controller has been shown to improve power system damping characteristics, neglecting the negative impact of existing high-gain AVR on the damping torque by considering its parameters as given values, may reduce the effectiveness of a CPSS-POD controller. Thus, using a technologically viable stabilizer such as PSS2B rather than the CPSS in a coordinated scheme with an AVR and POD controller can constitute a well-established design with a structure that as a high potential to significantly improve the rotor angle stability. The design procedure is formulated as an optimization problem in which the ITSE (integral of time multiplied squared error) performance index as an objective function is minimized by employing an IPSO (improved particle swarm optimization) algorithm to tune adjustable parameters. The robustness of the coordinated designs is guaranteed by concurrently considering some operating conditions in the optimization process. To evaluate the performance of the proposed controllers, eigenvalue analysis and time domain simulations were performed for different operating points and perturbations simulated on 2A4M (two-area four-machine) power systems in MATLAB/Simulink. The results reveal that surpassing improvement in damping of oscillations is achieved in comparison with the CPSS-TCSC coordination.

Development of reliable $H_\infty$ controller design algorithm for singular systems with failures (고장 특이시스템의 신뢰 $H_\infty$ 제어기 설계 알고리듬 개발)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.29-37
    • /
    • 2004
  • This paper provides a reliable H$_{\infty}$ state feedback controller design method for delayed singular systems with actuator failures occurred within the prescribed subset. The sufficient condition for the existence of a reliable H$_{\infty}$ controller and the controller design method are presented by linear matrix inequality(LMI), singular value decomposition, Schur complements, and changes of variables. The proposed controller guarantees not only asymptotic stability but also H$_{\infty}$ norm bound in spite of existence of actuator failures. Since the obtained sufficient condition can be expressed as an LMI fen all variables can be calculated simultaneously. Moreover, the controller design method can be extended to the problem of robust reliable H$_{\infty}$ controller design method for singular systems with parameter uncertainties, time-varying delay, and actuator failures. A numerical example is given to illustrate the validity of the result.