• Title/Summary/Keyword: control Lyapunov function

Search Result 374, Processing Time 0.022 seconds

Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition (Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기)

  • Park Young-Jin;Moon Seok-Jun;Park Youn-Sik;Lim Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

Longitudinal Control of the Lead Vehicle of a Platoon in IVHS using Backstepping Method (Backstepping 방법을 이용한 IVHS에서의 차량군 리드 차량의 종렬제어기 설계)

  • 박종호;정길도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.137-144
    • /
    • 2000
  • In this paper, a longitudinal control of the lead vehicle for a platoon in IVHS Regulation Layer is proposed. The backstepping method has been used for the controller design. This method has an advantage in that its stability need not be proven since the controller is designed based on the Lyapunov Function. The control object is that the lead vehicle tracks a reference velocity and maintains a safe distance between the inter-platoons while the followers are keeping the speed of the lead vehicle of a platoon. The coordinate of system is transformed to a new coordinate system for its convenience to design controller. The new coordinate system is composed of error and new error variable. The error is the difference between the safe distance and the actual distance of inter-platoons. A new error variable is the difference between the velocity of vehicle and the estimated state of a system operated by the virtual input. The Lyapunov function is obtained based on the variables of new coordinate system. In the computer simulation, several cases have been studied such as when the lead vehicle is tracking the optimal speed. or a lead vehicle of the following platoon tracks the velocity of the previous platoon while maintaining a safe distance. Also a nonlinear engine time constant case has been investigated. All the simulation results show that the designed controller satisfies the control object sufficiently.

  • PDF

Frequency Weighted Controller Reduction of Closed-Loop System Using Lyapunov Inequalities (Lyapunov 부등식을 이용한 페루프시스템의 주파수하중 제어기 차수축소)

  • Oh, Do-Chang;Jeung, Eun-Tae;Lee, Kap-Rai;Kim, Jong-Hae;Lee, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • This paper considers a new weighed model reduction method using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of the reduced order system is guaranteed and an a priori error bound is proposed. to achieve this after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical examples.

  • PDF

Weighting Matrices of LQR and ILQR Controllers Considering Structural Energy (구조물의 에너지를 고려한 LQR 및 ILQR제어기의 가중행렬)

  • 민경원;이영철;박민규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.49-53
    • /
    • 2002
  • This paper provides the systematic procedure to determine the weighting matrices of optimal controllers considering structural energy. Optimal controllers consist of LQR and ILQR. The weighting matrices are needed first in the conventional optimal control design strategy. However, they are in general dependent on the experienced knowledge of control designers. Applying the Lyapunov function to total structural energy and using the condition that its derivative is negative, we can determine the weighting matrices without difficulty. It is proven that the control efficiency with using determined weighting matrices is achieved well for LQR and ILQR controllers.

Nonlinear robust control design with quadratic Lyapunov function for robots with joint elasticity (2차의 리아프노프 함수에 의한 유연 조인트 로봇의 비선형 견실제어기 설계)

  • 김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.573-576
    • /
    • 1996
  • We propose robust control scheme for flexible joint manipulator in the presence of nonlinearity and mismatched uncertainty. The control is designed based on Lyapunov approach. The robust control which is based on the computed torque scheme and state transformation via implanted control is introduced. The design procedure starts with the construction of linearized subsystems via the computed torque method and then uses state transformation. With this approach we do not impose an upper-bound constraint on the inertia matrix in case it is known. Thus, this control can be applied to arbitrary manipulators. The resulting robust control guarantees practical stability for both the transformed system and the original system. The transformation is only based on the possible bound of uncertainty.

  • PDF

Adaptive Control of Flexible-Link Robots (유연마디 로봇의 적응제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1689-1696
    • /
    • 2000
  • This paper proposes a new adaptive control scheme for flexible-link robots. A model-based nonlinear control scheme is designed based on a V-shape Lyapunov function, and then the nonlinear control i s extended to a model-based adaptive control to cope with parametric uncertainties in the dynamic model. The proposed control guarantees the global exponential or global asymptotic stability of the overall control system with all internal signals bounded. The effectiveness of the proposed control is shown by computer simulation.

Nonlinear Stochastic Stability for Steam Generator Water Level Control System (증기발생기 수위제어의 확률론적 안정성)

  • Park, You-Cho;Chung, Chang-Hyun;Oh, Je-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • The steam generator water level control system is studied as a class of randomly sampled nonlinear control systems. The sampling interval and the loop amplification factor are considered as random variables in order to take the operator behavior in account. Stochastic stability using Lyapunov method is used without determining such Lyapunov function. The derived stability criterion is verified with time-domain simulation using the data of CANDU type nuclear power plant, Wolsung 1.

  • PDF

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law (슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계)

  • Lee, JunKu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

Highly Efficient Control of the Doubly Fed Induction Motor

  • Drid, Said;Makouf, Abdesslam;Nait-Said, Mohamed-Said;Tadjine, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.478-484
    • /
    • 2007
  • This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes# controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation and experimental results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.