• Title/Summary/Keyword: continuum elements

Search Result 113, Processing Time 0.024 seconds

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

A Methodolody of Considering the Failure of Supports in Evaluating Tunnel Safety Factors (터널의 안전율 평가 시 지보재 파괴 고려 방안 연구)

  • You Kwang-Ho;Hong Keun-Young;Park Yeon-Jun;Lee Hyun-Koo;Kim Jea-Kwon
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-224
    • /
    • 2005
  • The safety factor of a tunnel considering the failure of supports is important because the failure of supports might cause the collapse of the tunnel. In the previous studies, shotcrete was modelled as beam elements and the failure of the shotcrete was checked according to the allowable working stress concept. In this study, shotcrete was modelled by both beam elements and continuum (elasto-plastic) elements. Safety factors of tunnels were estimated by two dimensional numerical analysis with varying rock mass class, coefficient of lateral pressure, thickness of shotcrete, rock bolt reinforcement and excavation method. Also the study suggested not only a proper amount of supports but also modelling method.

  • PDF

Topology Optimization Using the Element Connectivity Parameterization Method in Three Dimensional Design Domain (3차원 설계 영역에서의 요소 연결 매개법을 이용한 위상 최적 설계)

  • Ho Yoon Gil;Young Kim Yoon;Soo Joung Yuung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.990-997
    • /
    • 2005
  • The objective of this paper is to present the element connectivity parameterization (ECP) fur three dimensional problems. In the ECP method, a continuum structure is viewed as discretized finite elements connected by zero-length elastic links whose stiffness values control the degree of inter-element connectivity. The ECP method can effectively avoid the formation of the low-density unstable elements. These elements appear when the standard element density method is used for geometrical nonlinear problems. In this paper, this ECP method developed fur two-dimensional problems is expanded to the design of three-dimensional geometrical nonlinear structures. Among others, the automatic procedure converting standard finite element models to the models suitable for the ECP approach is developed and applied for optimization problems defined on general three-dimensional design domains.

Formulation Method for Solid-to-Beam Transition Finite Elements

  • Im, Jang-Gwon;Song, Dae-Han;Song, Byeong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1499-1506
    • /
    • 2001
  • Various transition elements are used in general for the effective finite element analysis of complicated mechanical structures. In this paper, a solid-to-beam transition finite element, which can b e used for connecting a C1-continuity beam element to a continuum solid element, is proposed. The shape functions of the transition finite element are derived to meet the compatibility condition, and a transition element equation is formulated by the conventional finite element procedure. In order to show the effectiveness and convergence characteristics of the proposed transition element, numerical tests are performed for various examples. As a result of this study, following conclusions are obtained. (1) The proposed transition element, which meets the compatibility of the primary variables, exhibits excellent accuracy. (2) In case of using the proposed transition element, the number of nodes in the finite element model may be considerably reduced and the model construction becomes more convenient. (3) This formulation method can be applied to the usage of higher order elements.

  • PDF

Two scale seismic analysis of masonry infill concrete frames through hybrid simulation

  • Cesar Paniagua Lovera;Gustavo Ayala Milian
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • This paper presents the application of hybrid-simulation-based adapter elements for the non-linear two-scale analysis of reinforced concrete frames with masonry infills under seismic-like demands. The approach provides communication and distribution of the computations carried out by two or more remote or locally distributed numerical models connected through the OpenFresco Framework. The modeling consists of a global analysis formed by macro-elements to represent frames and walls, and to reduce global degrees of freedom, portions of the structure that require advanced analysis are substituted by experimental elements and dimensional couplings acting as interfaces with their respective sub-assemblies. The local sub-assemblies are modeled by solid finite elements where the non-linear behavior of concrete matrix and masonry infill adopt a continuum damage representation and the reinforcement steel a discrete one, the conditions at interfaces between concrete and masonry are considered through a contact model. The methodology is illustrated through the analysis of a frame-wall system subjected to lateral loads comparing the results of using macro-elements, finite element model and experimental observations. Finally, to further assess and validate the methodology proposed, the paper presents the pushover analysis of two more complex structures applying both modeling scales to obtain their corresponding capacity curves.

Topology Design Optimization of Structures using Solid Elements (3 차원 요소를 이용한 구조물의 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper, we develop continuum-based design sensitivity analysis (DSA) methods using both direct differential method (DDM) and adjoint variable method (AVM) for non-shape design problems. The developed DSA method is further utilized for the topology design optimization of 3-dimensional structures. In numerical examples, the analytical DSA results are verified using finite difference ones. The topology optimization method yields very reasonable results in physical point of view.

  • PDF

Heat and mass transfer processes at the most heat-stressed areas of the surface of the descent module

  • Oleg A., Pashkov;Boris A., Garibyan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.493-506
    • /
    • 2022
  • The study presents the results of the research of heat and heat exchange processes on the heat-stressed elements of the structure of an advanced TsAGI descent vehicle. The studies were carried out using a mathematical model based on solving discrete analogs of continuum mechanics equations. Conclusions were drawn about the correctness of the model and the dependence of the intensity of heat and mass transfer processes on the most heat-stressed sections of the apparatus surface on its geometry and the catalytic activity of the surface.

Formulation Method of a Solid-To-Beam Transitional Finite Element (연속체-보 천이 유한요소의 구성)

  • Park, Woo-Jin;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.351-356
    • /
    • 2000
  • Various transition elements are generally used for the effective analysis of a complicated mechanical structure. In this paper, a solid-to-beam transition finite element which connects a continuum element and a $c^1-continuity$ beam element each other is proposed. The shape functions of the transition finite elements, which a 8-noded hexahedral solid element fur 3D analysis and a 4-noded quadrilateral plane element fur 2D analysis are connected to a Euler's beam element, are explicitely formulated. In order to show the effectiveness and convergence characteristics of the proposed transition elements. numerical tests are performed for various examples and their results are compared with those obtained by other methods. As the result of this study. following conclusions are obtained: (1)The proposed transition finite elements show the monotonic convergence characteristics because of having used the compatible displacement folds. (2)As being used the transition element in the finite element analysis, the finite element modelings are more convenient and the analysis results are more accurate because of the formulation characteristies of the Euler's beam element.

  • PDF

Shape Design Sensitivity Analysis for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상설계민감도해석)

  • Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.76-83
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section and bottle shaped column are chosen to illustrate the efficiency of the presented method.

Shape Design Sensitivity Analysis for Stability of Elastic Structure (탄성 구조물의 안정성을 고려한 형상설계 민감도해석)

  • Choi Joo-Ho;Yang Wook-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.841-846
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section are chosen to illustrate the efficiency of the presented method.

  • PDF