• Title/Summary/Keyword: continuous wavelet

Search Result 154, Processing Time 0.033 seconds

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Recognition of Plasma- Induced X-Ray Photoelectron Spectroscopy Fault Pattern Using Wavelet and Neural Network (웨이블렛과 신경망을 이용한 플라즈마-유도 X-Ray Photoelectron Spectroscopy 고장 패턴의 인식)

  • Kim, Soo-Youn;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.135-137
    • /
    • 2006
  • To improve device yield and throughput, faults in plasma processing equipment should be quickly and accurately diagnosed. Despite many useful information of ex-situ sensor measurements, their applications to recognize plasma faultshave not been investigated. In this study, a new technique to identify fault causes by recognizing X-ray photoelectron spectroscopy (XPS) using neural network and continuous wavelet transformation (CWT). The presented technique was evaluated with the plasma etch data. A totalof 17 experiments were conducted for model construction. Model performance was investigated from the perspectives of training error, testing error, and recognition accuracy with respect to various thresholds. CWT-based BPNN models demonstrated a higher prediction accuracy of about 26%. Their advantages over pure XPS-based models were conspicuous in all three measures at small networks.

  • PDF

A Study on the Power Monitoring System using GPS for Accurate Time Synchronization (GPS 정밀시각동기를 이용한 전력계통 모니터링 시스템에 관한 연구)

  • 김혁수;전성준;김기택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.285-285
    • /
    • 2000
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paper describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Synchrosqueezed wavelet transform for frequency and damping identification from noisy signals

  • Montejo, Luis A.;Vidot-Vega, Aidcer L.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.441-459
    • /
    • 2012
  • Identification of vibration parameters from the analysis of the dynamic response of a structure plays a key role in current health monitoring systems. This study evaluates the capabilities of the recently developed Synchrosqueezed Wavelet Transform (SWT) to extract instant frequencies and damping values from the simulated noise-contaminated response of a structure. Two approaches to estimate the modal damping ratio from the results of the SWT are presented. The results obtained are compared to other signal processing methods based on Continuous Wavelet (CWT) and Hilbert-Huang (HHT) transforms. It was found that the time-frequency representation obtained via SWT is sharped than the obtained using just the CWT and it allows a more robust extraction of the individual modal responses than using the HHT. However, the identification of damping ratios is more stable when the CWT coefficients are employed.

Adaptation of Wavelet Algorithm for Obtaining a Human Brain's Function Map (뇌의 기능적 영역 추출을 위한 Wavelet 변환 알고리즘의 적용)

  • 이상민;장두봉;김동희;김광열;이건기;신태민
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.203-206
    • /
    • 2001
  • The fMRI which can express the function of brain as MR image is now being studied. The study on the functional image has usually been performed with the MRI in 4 tesla class in goneral, but if gradient echo imaging method could be used, it might make the most of what it has with the MRI in 1.5 tesla class. However, the lack of adequate image post-processing software prevents it from being used as widely as it could be. For the image post-processing algorithm of the functional image, subtraction method and several statistical methods are used with continuous introduction of new method recently. In this paper, we suggest adaptation of wavelet algorithm for obtaining a more reliable brain function map.

  • PDF

Signal processing based damage detection in structures subjected to random excitations

  • Montejo, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.745-762
    • /
    • 2011
  • Damage detection methodologies based on the direct examination of the nonlinear-nonstationary characteristics of the structure dynamic response may play an important role in online structural health monitoring applications. Different signal processing based damage detection methodologies have been proposed based on the uncovering of spikes in the high frequency component of the structural response obtained via Discrete Wavelet transforms, Hilbert-Huang transforms or high pass filtering. The performance of these approaches in systems subjected to different types of excitation is evaluated in this paper. It is found that in the case of random excitations, like earthquake accelerations, the effectiveness of such methodologies is limited. An alternative damage detection approach using the Continuous Wavelet Transform (CWT) is also evaluated to overcome this limitation. Using the CWT has the advantage that the central frequencies at which it operates can be defined by the user while the frequency bands of the detail functions obtained via DWT are predetermined by the sampling period of the signal.

Modeling of Chaotic Systems Using a DNA Coding Based Wavelet Neural Network (DNA 코딩 기반 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 모델링)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2176-2178
    • /
    • 2003
  • This paper presents the intelligent modeling method of chaotic systems using a DNA coding based wavelet neural network(WNN). Generally the mathematical teaming method such as gradient descent method is used to adjust the parameters of WNN, which has much computational cost. To overcome this kind of problem, we use the DNA coding method as the learning method of WNN, and then combine it with the WNN. Finally, to verify the efficiency of our method, we apply the proposed DNA coding based wavelet neural network for modeling of Duffing system, which is a representative continuous-time chaotic system.

  • PDF

Development of an Ambulatory Wearable System for Continuous Patient Monitoring (휴대용 심전도 모니터링 계측 시스템 개발에 관한 연구)

  • Park, Chan-Won;Jeon, Chan-Min
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.920-923
    • /
    • 2003
  • An wearable electrocardiogram (ECG) monitoring system is a widely used non-invasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we have a portable ECG monitoring system with conductive fiber which was characterized by the small-size and the low power consumption. The system consists of conductive fibers, one-chip microcontroller, ECG preprocessing circuit, and monitoring software to be able to record and analyze in PC. ECG preprocessing circuit is made of pre-amplifier with gain of 10, band-pass filter with bandwidth of 0.5-120Hz and 2.5V offset circuit for A/D conversion. ECG signals obtained by sensor are included with corrupted noises such as a baseline wandering, 60 Hz power noise and interference noise by body movement. For cancellation corrupted noises in signals obtained by conductive fiber, we used the wavelet decomposition of wavelet transforms in MATLAB toolbox.

  • PDF

Linear System Analysis Using Wavelets Transform: Application to Ultrasonic Signal Analysis (웨이브렛 변환을 이용한 선형시스템 분석: 초음파 신호 해석의 응용)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2020
  • The Linear system analysis for physical system is very powerful tool for system diagnostic utilizing relationship between the input signal and output signal. This method utilized generally to investigate physical properties of system and the nondestructive test by ultrasonic signals. This method can be explained by linear system theory. In this paper the Continuous Wavelets Transform is utilized to search the relation between the linear system and continuous wavelets transform.