References
- Bamnios, Y., Douka E. and Trochidis, A. (2002), "Crack identification in beam structures using FEM", J. Sound Vib., 256(2), 287-297. https://doi.org/10.1006/jsvi.2001.4209
- Bilello, C. and Bergman, L.A. (2004), "Vibration of damaged beams under a moving mass: theory and experimental validation", J. Sound Vib., 274, 567-582. https://doi.org/10.1016/j.jsv.2003.01.001
- Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF regional conference series in applied mathematics, Society for Industrial and Applied Mathematics, Philadelphia.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Douka, E., Loutridis, S. and Trochidis, A. (2003), "Crack identification in beams using wavelet analysis", Int. J. Solids Struct., 40, 3557-3569. https://doi.org/10.1016/S0020-7683(03)00147-1
- Gentile, A. and Messina, A. (2003), "On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams", Int. J. Solids Struct., 40, 295-315. https://doi.org/10.1016/S0020-7683(02)00548-6
- Han, J.G., Ren, W.X. and Sun, Z.S. (2005), "Wavelet packet based damage identification of beam structures", Int. J. Solids Struct., 42, 6610-6627. https://doi.org/10.1016/j.ijsolstr.2005.04.031
- Hong, J.C., Kim, Y.Y., Lee, H.C. and Lee, Y.W. (2002), "Damage detection using the Lipschitz exponent estimated by the wavelet transform applications to vibration modes of a beam", Int. J. Solids Struct., 39, 1803-1816. https://doi.org/10.1016/S0020-7683(01)00279-7
- Loutridis, S., Douka, E., Hadjileontiadis, L.J. and Trochidis, A. (2005), "A two-dimensional wavelet transform for detection of cracks in plates", Eng. Struct., 27, 1327-1338. https://doi.org/10.1016/j.engstruct.2005.03.006
- Mahmoud, M.A. and Abou Zaid, M.A. (2002), "Dynamic response of a beam with a crack subject to a moving mass", J. Sound Vib., 256(4), 591-603. https://doi.org/10.1006/jsvi.2001.4213
- Mallat, S. and Hwang, W.L. (1992), "Singularity detection and processing with wavelets", IEEE T. Inform. Theory, 38(2), 617-643. https://doi.org/10.1109/18.119727
- Masoud, S., Jarrah, M.A. and Maamory, M.Al. (1998), "Effect of crack depth on the natural frequency of a prestressed fixed-fixed beam", J. Sound Vib., 214(2), 201-212. https://doi.org/10.1006/jsvi.1997.1541
- Montalvão, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib. Digest, 38(4), 1-30.
- Narkis, Y. (1994), "Identification of crack location in vibrating simply-supported beams", J. Sound Vib., 172(4), 549-558. https://doi.org/10.1006/jsvi.1994.1195
- Narkis, Y. and Elmalah, E. (1996), "Crack identification in a cantilever beam under uncertain end condition", J. Mech. Sci., 38(5), 499-507. https://doi.org/10.1016/0020-7403(95)00071-2
- Philips, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility, Interact. Multiscale Mech., 2(1), 31-44. https://doi.org/10.12989/imm.2009.2.1.031
- Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
- Sinha, J.K., Friswell, M.I. and Edwards, S. (2002), "Simplified models for the location of cracks in beam structures using measured", J. Sound Vib., 251(1), 13-38. https://doi.org/10.1006/jsvi.2001.3978
- Staszecski, W.J. (1998), "Structural and mechanical damage detection using wavelets", Shock Vib. Digest, 30(6), 457-472. https://doi.org/10.1177/058310249803000602
- Tada, H., Paris, P. and Irwin, G.. (1973), The stress analysis of cracks handbook, Hellertown, Pennsylvania: Del Research Corporation.
- Xiang, Z.H. and Zhang, Y. (2009), "Changes of modal properties of simply-supported plane beams due to damages", Interact. Multiscale Mech., 2(2), 153-175. https://doi.org/10.12989/imm.2009.2.2.153
- Yuen, M.M.F. (1985), "A numerical study of the eigen parameters of a damaged cantilever beam", J. Sound Vib., 103, 301-310. https://doi.org/10.1016/0022-460X(85)90423-7
- Zhu, X.Q. and Law, S.S. (2006), "Wavelet-based crack identification of bridge beam from operational deflection time history", Int. J. Solids Struct., 43, 2299-2317. https://doi.org/10.1016/j.ijsolstr.2005.07.024
Cited by
- Bridge Damage Identification from Moving Load Induced Deflection Based on Wavelet Transform and Lipschitz Exponent vol.16, pp.05, 2016, https://doi.org/10.1142/S0219455415500030
- A two-step approach for crack identification in beam vol.332, pp.2, 2013, https://doi.org/10.1016/j.jsv.2012.08.025
- Analysis and identification of multiple-cracked beam subjected to moving harmonic load 2018, https://doi.org/10.1177/1077546317694496
- Damage Identification in Bridges by Processing Dynamic Responses to Moving Loads: Features and Evaluation vol.19, pp.3, 2019, https://doi.org/10.3390/s19030463
- Time-frequency analysis of a coupled bridge-vehicle system with breathing cracks vol.5, pp.3, 2012, https://doi.org/10.12989/imm.2012.5.3.169
- Numerical Parametric Study on the Effectiveness of the Contact-Point Response of a Stationary Vehicle for Bridge Health Monitoring vol.11, pp.15, 2010, https://doi.org/10.3390/app11157028