DOI QR코드

DOI QR Code

Synchrosqueezed wavelet transform for frequency and damping identification from noisy signals

  • Montejo, Luis A. (Department of Engineering Science and Materials, University of Puerto Rico at Mayaguez) ;
  • Vidot-Vega, Aidcer L. (Department of Engineering Science and Materials, University of Puerto Rico at Mayaguez)
  • Received : 2011.09.29
  • Accepted : 2012.04.19
  • Published : 2012.05.25

Abstract

Identification of vibration parameters from the analysis of the dynamic response of a structure plays a key role in current health monitoring systems. This study evaluates the capabilities of the recently developed Synchrosqueezed Wavelet Transform (SWT) to extract instant frequencies and damping values from the simulated noise-contaminated response of a structure. Two approaches to estimate the modal damping ratio from the results of the SWT are presented. The results obtained are compared to other signal processing methods based on Continuous Wavelet (CWT) and Hilbert-Huang (HHT) transforms. It was found that the time-frequency representation obtained via SWT is sharped than the obtained using just the CWT and it allows a more robust extraction of the individual modal responses than using the HHT. However, the identification of damping ratios is more stable when the CWT coefficients are employed.

Keywords

Acknowledgement

Supported by : National Science Foundation Grant

References

  1. Al-Sanad, H., Aggour, M.S. and Yang J.C.S. (1983), "Dynamic shear modulus and damping ratio from random loading tests", Geotech. Test. J., 6(3), 120-127. https://doi.org/10.1520/GTJ10840J
  2. Auger, F. and Flandrin, P. (1995), "Improving the readability of time-frequency and timescale representations by the reassignment method", IEEE T. Signal Proces., 43(5), 1068-1089. https://doi.org/10.1109/78.382394
  3. Bagheripour, M.H., Rahgozar, R. and Malekinejad, M. (2010), "Efficient analysis of SSI problems using infinite elements and wavelet theory", Geomech. Eng., 2(4), 229-252. https://doi.org/10.12989/gae.2010.2.4.229
  4. Boltezar, M. and Slavie, J. (2004), "Enhancements to the continuous wavelet transform for damping identification on short signals", Mech. Syst. Signal Pr., 18(5), 1065-1076. https://doi.org/10.1016/j.ymssp.2004.01.004
  5. Brevdo, E., Fuekar, N.S., Thakur, G. and Wu, H.T. (2011), "The Synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum", arXiv:1105.0010v1
  6. Carmona, R.A., Hwang, W.L. and Torresani, B. (1997), "Characterization of signals by the ridges of their wavelet transforms", IEEE T. Signal Proces., 54(10), 2586-2590.
  7. Chan, Y.H., Wu, H.T., Hseu, S.S., Kuo, C.T. and Yeh, Y.H. (2011) "ECG-derived respiration and instantaneous frequency based on the synchrosqueezing transform: Application to patients with atrial fibrillation", arXiv: 1105.1571v1
  8. Chassande-Mottin, E., Auger, F. and Flandrin, P. (2003), "Time-frequency/timescale reassignment", Wave. Signal Proces., 233-267.
  9. Chassande-Mottin, E., Daubechies, I., Auger, F. and Flandrin, P. (1997), "Differential reassignment", IEEE Signal Proc. Let., 4(10), 293-294. https://doi.org/10.1109/97.633772
  10. Chen, S.L., Liu, J.J. and Lai, H.C. (2009), "Wavelet analysis for identification of damping ratios and natural frequencies", J. Sound Vib.,323(1-2), 130-147. https://doi.org/10.1016/j.jsv.2009.01.029
  11. Cole, H.A. (1968), "On-the-line analysis of random vibrations", Proceedings of the AIAA/ASME Ninth Structures Structural Dynamics and Materials Conference, Palm Springs, CA.
  12. Daubechies, I. and Maes, S. (1996), "A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models", Wave. Med. Biology, CRC Press, 527-546.
  13. Daubuchies, I., Lu, J. and Wu, H.T. (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. A., 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
  14. Feldman, M. (2006), "Time varying vibration decomposition and analysis based on the Hilbert transform", J. Sound Vib., 295(3-5), 518-530. https://doi.org/10.1016/j.jsv.2005.12.058
  15. Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Pr., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
  16. Feldman, M. (2011b), Hilbert transform applications in mechanical vibrations, Wiley.
  17. Gabor, D. (1946), "Theory of communication", Proceedings of the IEEE 93(III).
  18. Gokdag, H. and Kopmaz, O. (2010), "A new structural damage detection index based on analyzing vibration modes by the wavelet transform", Struct. Eng. Mech., 35(2), 257-260. https://doi.org/10.12989/sem.2010.35.2.257
  19. Grossman, A. and Morlet, J. (1984), "Decomposition of Hardy Functions into square integrable wavelets of constant shape", SIAM J. Math. Anal., 15(4), 723-736. https://doi.org/10.1137/0515056
  20. Grossman, A. and Morlet, J. (1990), Decompositions of functions into wavelets of constant shape and related transforms, Mathematics and Physics - Lecture on Recent Results, World Scientific, Singapore, 135-165.
  21. Hahn, S.L. (1996), Hilbert transforms in signal processing, Artech House, Boston.
  22. Hilbert, D. (1953), Grundzüge einer allgemeinen theorie der linearen integralgleichungen, Chelsea Pub. Co.
  23. Huang, N.E. (2005), Introduction to the Hilbert Huang transform and its related mathematical problems, Hilbert Huang Transform and Its Applications, World Scientific, 1-26.
  24. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Philos. T. R. Soc. A., 454(1971), 903-995.
  25. Johansson, M. (1999), The Hilbert transform, M.S. Thesis, Vaxjo University.
  26. Kijewski, T. and Kareem, A. (2003), "Wavelets transform for system identification in civil engineering", Comput. Aided Civil. Infra. Eng., 18(5), 339-355. https://doi.org/10.1111/1467-8667.t01-1-00312
  27. Korpel, A. (1982), "Gabor: frequency, time, and memory", Appl.Optics, 21(20), 3624-3632. https://doi.org/10.1364/AO.21.003624
  28. Li, C. and Liang, M. (2011), "Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform", Mech. Syst. Signal Pr., doi:10.1016/j.ymssp.2011.07.001.
  29. Montejo, L.A. (2011), "Signal processing based damage detection in structures subjected to random excitations," Struct. Eng. Mech., 40(6), 745-762. https://doi.org/10.12989/sem.2011.40.6.745
  30. Montejo, L.A. and Suarez, L.E. (2006), "Wavelet based identification of site frequencies from earthquake records", J. Earthq. Eng., 10(3), 565-594
  31. Rilling, G., Flandrin, P. and Gonçalves, P. (2003), "On empirical mode decomposition and its algorithms", Proceedings of the IEEEEURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03.
  32. Slavie, J., Simonovski, I. and Boltezar, M. (2003), "Damping identification using a continuous wavelet transform: Application to real data", J. Sound Vib., 262(2), 291-307. https://doi.org/10.1016/S0022-460X(02)01032-5
  33. Staszewski, W.J. (1997), "Identification of damping in MDOF systems using time-scale decomposition", J. Sound Vib., 203(2), 283-305. https://doi.org/10.1006/jsvi.1996.0864
  34. Thakur, G. and Wu, H.T. (2010), "Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples", arXiv:1006.2533v3.
  35. Todorovska, M.I. (2001), Estimation of instantaneous frequency of signals using the continuous wavelet transform, Report CE 01-07, Department of Civil Engineering, University of Southern California.
  36. Ville, J. (1948), "Theorie et application de la notion de signal analytical", Cables et Transmissions, 2A(1), 61-74.
  37. Wu, H.T. (2011), "Instantaneous frequency and wave shape functions", arXiv:1104.2365v1.
  38. Wu, Z. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: A noise assisted data analysis method", Adv. Adaptive Data Anal., 1(1), 1-41. https://doi.org/10.1142/S1793536909000047
  39. Yan, B. and Miyamoto, A. (2006), "A comparative study of modal parameter identification based on wavelet and Hilbert-Huang transforms", Comput. Aided Civil Infra. Eng., 21(1), 9-23. https://doi.org/10.1111/j.1467-8667.2005.00413.x
  40. Yang, J.N., Lei, Y., Lin, S. and Huang, N. (2004), "Hilbert-Huang based approach for structural damage detection", J. Eng. Mech.- ASCE, 130(1), 85-95. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(85)

Cited by

  1. A synchrosqueezed wavelet transform enhanced by extended analytical mode decomposition method for dynamic signal reconstruction vol.332, pp.22, 2013, https://doi.org/10.1016/j.jsv.2013.04.026
  2. Linear and synchrosqueezed time–frequency representations revisited: Overview, standards of use, resolution, reconstruction, concentration, and algorithms vol.42, 2015, https://doi.org/10.1016/j.dsp.2015.03.004
  3. Output-only identification of the modal and physical properties of structures using free vibration response vol.15, pp.3, 2016, https://doi.org/10.1007/s11803-016-0345-x
  4. On the identification of damping from non-stationary free decay signals using modern signal processing techniques vol.7, pp.3, 2015, https://doi.org/10.1007/s40091-015-0096-3
  5. Nonlinear time-varying vibration system identification using parametric time–frequency transform with spline kernel vol.85, pp.3, 2016, https://doi.org/10.1007/s11071-016-2786-1
  6. Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.001
  7. Structural damage identification using damping: a compendium of uses and features vol.26, pp.4, 2017, https://doi.org/10.1088/1361-665X/aa550a
  8. On the use of numerical models for validation of high frequency based damage detection methodologies vol.2, pp.4, 2015, https://doi.org/10.12989/smm.2015.2.4.383
  9. Synchrosqueezed wavelet transform for damping identification vol.80, 2016, https://doi.org/10.1016/j.ymssp.2016.05.005
  10. Damping and frequency changes induced by increasing levels of inelastic seismic demand vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.445
  11. Wavelet-Based Damage Detection in Reinforced Concrete Structures Subjected to Seismic Excitations vol.17, pp.8, 2013, https://doi.org/10.1080/13632469.2013.804467
  12. Experimental and numerical evaluation of wavelet based damage detection methodologies vol.7, pp.1, 2015, https://doi.org/10.1007/s40091-015-0084-7
  13. Optimal Wavelet Parameters for System Identification of Civil Engineering Structures vol.34, pp.1, 2018, https://doi.org/10.1193/092016EQS154M
  14. Time–Frequency Analysis of Pressure Pulsation Signal in the Chamber of Self-Resonating Jet Nozzle vol.32, pp.11, 2018, https://doi.org/10.1142/S0218001418580065
  15. Modal Parameters Identification Method Based on Symplectic Geometry Model Decomposition vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/5018732