Acknowledgement
Supported by : National Science Foundation Grant
References
- Al-Sanad, H., Aggour, M.S. and Yang J.C.S. (1983), "Dynamic shear modulus and damping ratio from random loading tests", Geotech. Test. J., 6(3), 120-127. https://doi.org/10.1520/GTJ10840J
- Auger, F. and Flandrin, P. (1995), "Improving the readability of time-frequency and timescale representations by the reassignment method", IEEE T. Signal Proces., 43(5), 1068-1089. https://doi.org/10.1109/78.382394
- Bagheripour, M.H., Rahgozar, R. and Malekinejad, M. (2010), "Efficient analysis of SSI problems using infinite elements and wavelet theory", Geomech. Eng., 2(4), 229-252. https://doi.org/10.12989/gae.2010.2.4.229
- Boltezar, M. and Slavie, J. (2004), "Enhancements to the continuous wavelet transform for damping identification on short signals", Mech. Syst. Signal Pr., 18(5), 1065-1076. https://doi.org/10.1016/j.ymssp.2004.01.004
- Brevdo, E., Fuekar, N.S., Thakur, G. and Wu, H.T. (2011), "The Synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum", arXiv:1105.0010v1
- Carmona, R.A., Hwang, W.L. and Torresani, B. (1997), "Characterization of signals by the ridges of their wavelet transforms", IEEE T. Signal Proces., 54(10), 2586-2590.
- Chan, Y.H., Wu, H.T., Hseu, S.S., Kuo, C.T. and Yeh, Y.H. (2011) "ECG-derived respiration and instantaneous frequency based on the synchrosqueezing transform: Application to patients with atrial fibrillation", arXiv: 1105.1571v1
- Chassande-Mottin, E., Auger, F. and Flandrin, P. (2003), "Time-frequency/timescale reassignment", Wave. Signal Proces., 233-267.
- Chassande-Mottin, E., Daubechies, I., Auger, F. and Flandrin, P. (1997), "Differential reassignment", IEEE Signal Proc. Let., 4(10), 293-294. https://doi.org/10.1109/97.633772
- Chen, S.L., Liu, J.J. and Lai, H.C. (2009), "Wavelet analysis for identification of damping ratios and natural frequencies", J. Sound Vib.,323(1-2), 130-147. https://doi.org/10.1016/j.jsv.2009.01.029
- Cole, H.A. (1968), "On-the-line analysis of random vibrations", Proceedings of the AIAA/ASME Ninth Structures Structural Dynamics and Materials Conference, Palm Springs, CA.
- Daubechies, I. and Maes, S. (1996), "A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models", Wave. Med. Biology, CRC Press, 527-546.
- Daubuchies, I., Lu, J. and Wu, H.T. (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. A., 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
- Feldman, M. (2006), "Time varying vibration decomposition and analysis based on the Hilbert transform", J. Sound Vib., 295(3-5), 518-530. https://doi.org/10.1016/j.jsv.2005.12.058
- Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Pr., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
- Feldman, M. (2011b), Hilbert transform applications in mechanical vibrations, Wiley.
- Gabor, D. (1946), "Theory of communication", Proceedings of the IEEE 93(III).
- Gokdag, H. and Kopmaz, O. (2010), "A new structural damage detection index based on analyzing vibration modes by the wavelet transform", Struct. Eng. Mech., 35(2), 257-260. https://doi.org/10.12989/sem.2010.35.2.257
- Grossman, A. and Morlet, J. (1984), "Decomposition of Hardy Functions into square integrable wavelets of constant shape", SIAM J. Math. Anal., 15(4), 723-736. https://doi.org/10.1137/0515056
- Grossman, A. and Morlet, J. (1990), Decompositions of functions into wavelets of constant shape and related transforms, Mathematics and Physics - Lecture on Recent Results, World Scientific, Singapore, 135-165.
- Hahn, S.L. (1996), Hilbert transforms in signal processing, Artech House, Boston.
- Hilbert, D. (1953), Grundzüge einer allgemeinen theorie der linearen integralgleichungen, Chelsea Pub. Co.
- Huang, N.E. (2005), Introduction to the Hilbert Huang transform and its related mathematical problems, Hilbert Huang Transform and Its Applications, World Scientific, 1-26.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Philos. T. R. Soc. A., 454(1971), 903-995.
- Johansson, M. (1999), The Hilbert transform, M.S. Thesis, Vaxjo University.
- Kijewski, T. and Kareem, A. (2003), "Wavelets transform for system identification in civil engineering", Comput. Aided Civil. Infra. Eng., 18(5), 339-355. https://doi.org/10.1111/1467-8667.t01-1-00312
- Korpel, A. (1982), "Gabor: frequency, time, and memory", Appl.Optics, 21(20), 3624-3632. https://doi.org/10.1364/AO.21.003624
- Li, C. and Liang, M. (2011), "Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform", Mech. Syst. Signal Pr., doi:10.1016/j.ymssp.2011.07.001.
- Montejo, L.A. (2011), "Signal processing based damage detection in structures subjected to random excitations," Struct. Eng. Mech., 40(6), 745-762. https://doi.org/10.12989/sem.2011.40.6.745
- Montejo, L.A. and Suarez, L.E. (2006), "Wavelet based identification of site frequencies from earthquake records", J. Earthq. Eng., 10(3), 565-594
- Rilling, G., Flandrin, P. and Gonçalves, P. (2003), "On empirical mode decomposition and its algorithms", Proceedings of the IEEEEURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03.
- Slavie, J., Simonovski, I. and Boltezar, M. (2003), "Damping identification using a continuous wavelet transform: Application to real data", J. Sound Vib., 262(2), 291-307. https://doi.org/10.1016/S0022-460X(02)01032-5
- Staszewski, W.J. (1997), "Identification of damping in MDOF systems using time-scale decomposition", J. Sound Vib., 203(2), 283-305. https://doi.org/10.1006/jsvi.1996.0864
- Thakur, G. and Wu, H.T. (2010), "Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples", arXiv:1006.2533v3.
- Todorovska, M.I. (2001), Estimation of instantaneous frequency of signals using the continuous wavelet transform, Report CE 01-07, Department of Civil Engineering, University of Southern California.
- Ville, J. (1948), "Theorie et application de la notion de signal analytical", Cables et Transmissions, 2A(1), 61-74.
- Wu, H.T. (2011), "Instantaneous frequency and wave shape functions", arXiv:1104.2365v1.
- Wu, Z. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: A noise assisted data analysis method", Adv. Adaptive Data Anal., 1(1), 1-41. https://doi.org/10.1142/S1793536909000047
- Yan, B. and Miyamoto, A. (2006), "A comparative study of modal parameter identification based on wavelet and Hilbert-Huang transforms", Comput. Aided Civil Infra. Eng., 21(1), 9-23. https://doi.org/10.1111/j.1467-8667.2005.00413.x
- Yang, J.N., Lei, Y., Lin, S. and Huang, N. (2004), "Hilbert-Huang based approach for structural damage detection", J. Eng. Mech.- ASCE, 130(1), 85-95. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(85)
Cited by
- A synchrosqueezed wavelet transform enhanced by extended analytical mode decomposition method for dynamic signal reconstruction vol.332, pp.22, 2013, https://doi.org/10.1016/j.jsv.2013.04.026
- Linear and synchrosqueezed time–frequency representations revisited: Overview, standards of use, resolution, reconstruction, concentration, and algorithms vol.42, 2015, https://doi.org/10.1016/j.dsp.2015.03.004
- Output-only identification of the modal and physical properties of structures using free vibration response vol.15, pp.3, 2016, https://doi.org/10.1007/s11803-016-0345-x
- On the identification of damping from non-stationary free decay signals using modern signal processing techniques vol.7, pp.3, 2015, https://doi.org/10.1007/s40091-015-0096-3
- Nonlinear time-varying vibration system identification using parametric time–frequency transform with spline kernel vol.85, pp.3, 2016, https://doi.org/10.1007/s11071-016-2786-1
- Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.001
- Structural damage identification using damping: a compendium of uses and features vol.26, pp.4, 2017, https://doi.org/10.1088/1361-665X/aa550a
- On the use of numerical models for validation of high frequency based damage detection methodologies vol.2, pp.4, 2015, https://doi.org/10.12989/smm.2015.2.4.383
- Synchrosqueezed wavelet transform for damping identification vol.80, 2016, https://doi.org/10.1016/j.ymssp.2016.05.005
- Damping and frequency changes induced by increasing levels of inelastic seismic demand vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.445
- Wavelet-Based Damage Detection in Reinforced Concrete Structures Subjected to Seismic Excitations vol.17, pp.8, 2013, https://doi.org/10.1080/13632469.2013.804467
- Experimental and numerical evaluation of wavelet based damage detection methodologies vol.7, pp.1, 2015, https://doi.org/10.1007/s40091-015-0084-7
- Optimal Wavelet Parameters for System Identification of Civil Engineering Structures vol.34, pp.1, 2018, https://doi.org/10.1193/092016EQS154M
- Time–Frequency Analysis of Pressure Pulsation Signal in the Chamber of Self-Resonating Jet Nozzle vol.32, pp.11, 2018, https://doi.org/10.1142/S0218001418580065
- Modal Parameters Identification Method Based on Symplectic Geometry Model Decomposition vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/5018732