• Title/Summary/Keyword: continuous cooling

Search Result 257, Processing Time 0.024 seconds

Experimental Study of Showcase Using Cold Storage System (축냉 시스템을 적용한 쇼케이스 운전에 대한 실험적 연구)

  • Lee, Eun-Ji;Lee, Dong-Won;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1111-1116
    • /
    • 2008
  • The purpose of this study is to maintain high efficiency and reasonable use of cold-heat storage systems operated the showcase. An experimental study is carried out to manufacture the showcase system in a laboratory. Comparing the result at general operation condition with that at the new condition using ice storage system, this study showed the effects of the refrigerant sub-cooling, and with using inverter. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling.

  • PDF

Adhesion of Ice Slurry in an Aqueous Solution Cooling with Stirring (수용액의 교반/냉각을 동반한 슬러리 얼음의 빙부착)

  • Kang, Chae-Dong;Son, Kwon;Baek, Jong-Hyun;Hong, Hee-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1071-1077
    • /
    • 2002
  • Ice adhesion on cooling wall is very important in continuous ice formation. The purpose of the present study is to investigate the possibilities of a three-component aqueous solution as a thermal storage material for the continuous ice formation. By freezing under stirring the solution of 300 mL in a stainless steel vessel which was immersed and cooled in a temperature controlled bath, an ice slurry was formed experimentally with measuring the temperature and stirring load variation. From the experiment, the ice adhesion was suppressed when the supercooling degree decreased and the concentration of aqueous solution increased.

NUMERICAL STUDY OF CHIP COOLING ENHANCEMENT WITH EVAPORATING MIST FLOW (분무 증발을 이용한 칩 냉각 향상에 대한 수치적 연구)

  • Roh, S.E.;Kim, D.;Son, G.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The heat transfer enhancement of heat sink with mist flow is studied numerically by solving the conservation equations for mass, momentum and energy in the continuous and dispersed phases. A Lagrangian method is used for tracing dispersed water droplets in the heat sink and an Eulerian species transport model for air and steam mixture. The continuous and dispersed phases are interacted with the drag and evaporation source terms. The computed results show that addition of evaporating mist droplets enhances the cooling performance of heat sink significantly.

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

A Study of Rheology Properties of AM50A Magnesium Alloy (AM50A 마그네슘합금의 레오로지 특성에 관한 연구)

  • Han S.H.;Lee J.H.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.431-432
    • /
    • 2006
  • In this study, the effect of the temperature of magnesium slurry was investigated by mechanical stirring method. The evaluations of rheological behavior of AM50A magnesium alloy were measuring of viscosity and microstructures in the semisolid state. The apparent viscosity was investigated at continuous cooling rate using a concentric cylinder viscometer. Measurement of viscosity measures torque that act to stirrer rotating in slurry doing continuous cooling using torque-meter and expressed by POWER-LAW. Microstructures were observed after mechanical stirring that enforce time at steady state temperature of solid fraction.

  • PDF

Effect of seed on the TSMG processing of RE-123 superconductor (TSMG법에 의한 RE-123계 초전도 단결정 제조에 미치는 seed의 영향)

  • O, Yong-Taeg;Shin, Dong-Chan;Han, Sang-Chul;Sung, Tae-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • This study investigated the phase transformation of the $REBa_2Cu_3O_{7-x}$ (RE=Nd, Gd, By) superconductor, and CCT (Continuous-Cooling-Transformation) along with the TTT (Time-Temperature-Transformation) diagrams are suggested according to the isothermal and continuous cooling heat-treatments. According to result of fabricated single crystal of RE-123 superconductor through TSMG method based on phase transformation neted among heat treatment process, when the ionic radius elements was decreased, RE-211 phase was well-distributed. According to result that examine about seed of pretreatment effect of TSMG method, magnetic hysteresis improved when preprocess among oxygen atmosphere in same seed. and used after. Effect of miscut expressed good superconducting special quality in case miscut uses big seed.

  • PDF

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각방법에 따른 열간단조 금형의 수명 평가)

  • 김병민;김동환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.23-26
    • /
    • 2003
  • This paper explains the die cooling method for improving tool life in the hot forging process. In continuous forming operation such as hot forging process, performed at high speeds, temperature increases of several hundred degrees may be involved. Die hardness was reduced due to thermal softening. Factor of die fracture are wear and plastic deformation of die due to hardness reduction by high temperature. Because die service life was reduced due to this phenomenon during hot forging, quantified data for optimal die cooling method is required. The new developed techniques for predicting tool life applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process

  • PDF

A STUDY ON THE BEHAVIOR OF BORON DISTRIBUTION IN LOW CARBON STEEL BY PARTICLE TRACKING AUTORADIOGRAPHY

  • Mun, Dong-Jun;Shin, Eun-Joo;Koo, Yang-Mo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The behavior of the non-equilibrium grain boundary segregation of boron in low carbon steel was studied through a particle tracking autoradiography. The behavior of the non-equilibrium grain boundary segregation of boron during continuous cooling was compared with the isothermal kinetics of the non-equilibrium grain boundary segregation of boron at the holding temperature using an effective time method. On the basis of the experiments, the cooling rate dependence of the non-equilibrium segregation of boron was explained using the time dependence of the non-equilibrium segregation of boron in low carbon steel. The experimental observations for the cooling rate dependence of the grain boundary segregation of boron are in good agreement with the time dependence of the grain boundary segregation of boron. The mechanisms of the non-equilibrium segregation of boron during cooling in low carbon steel are also discussed.

Effect on the Adhesion of Ice Slurry by the Characteristic of Cooling Surface (냉각면 성상이 빙부착에 미치는 영향)

  • Seung Hyun;Hong Hi Ki;Kang Chae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • In the process of ice-slurry making, ice adhesion on cooling wall or in narrow flow Path disturbs continuous ice formation. In this study, the effect on the ice adhesion to cooling surface by some freezing experiments was investigated, quantitatively. Three types of solutions were frozen in various coating vessels with stirring. In the experiment, the ice adhesion between cooling wall and Ice-slurry was evaluated by measuring stirring power. From the result, the stirring power of slurry mixture in PTFE-coating vessel was smaller than those in PE-coating, PFA-coating and bare SUS vessel. Especially, in EG H PG 1.S/ HD 1.5 mass$\%$ solution, the stirring power in the PE-coating vessel was smaller than that in the PFA-coating or SUS vessel.