Network infrastructure has spread to an unprecedented extent and is used in various computing devices, such as smart appliances, smart phones, and embedded devices with sensors, which have all been appearing in the computing environment. To accommodate this trend, for a more intelligent service environment, the service platform needs to have abilities that facilitate the operation between services, dynamically share distributed computing resources, and manage appropriate contextual information. We have simulated a service platform to provide intelligent services using contextual information after having implemented the context management service. The context management service gathers raw contextual information from sensors and stores these in the context database. For a consistent basis of contextual information, time and location are used as the key values of the contextual information. The context management service also performs normalization to provide computable contextual information to context-aware applications. In this paper, a service platform based on Jini technology is proposed for constructing an interoperable, dynamic, and . intelligent service environment using contextual information.
Journal of Information Technology Applications and Management
/
v.14
no.4
/
pp.75-96
/
2007
The effects of information quality and the importance of information have been reported in the Information Systems (IS) literature. However, little has been learned about the impact of information visualization types and contextual information on decision quality. Therefore, this study investigated the interaction effects of these variables on decision quality by conducting a laboratory experiment. Based on two types of information visualization and the availableness of contextual information, this study had a $2{\times}2$ factorial design. The dependent variables used to measure the outcomes of decision quality were decision accuracy and time. The results demonstrated that the effects of contextual information on decision quality were significant. In addition, there was a significant main effect of information visualization on decision accuracy. The findings suggest that decision makers can expect to improve their decision quality by enhancing information visualization types and contextual information. This research may extend a body of research examining the effects of factors that can be tied to human decision-making performance.
The effects of information quality and the importance of information have been reported in the information Systems(IS) literature. However, little has been learned about the impact of data quality(DQ) on decision performance. Recognizing with this problem, this study explores the effects of contextual DQ on decision performance. To examine them, a laboratory experiment was conducted. Based on two levels of contextual DQ and two levels of task complexity, this study had a $2{\times}2$ factorial design. The dependent variables used to measure the outcomes of decision performance were problem-solving accuracy and time. The results demonstrated that the effects of contextual DQ on decision performance were significant. The findings suggest that decision makers can expect to improve their decision performance by enhancing contextual DQ. This research not only extends a body of research examining the effects of factors that can be tied to human decision-making performance, but also provides empirical evidence to validate and extend DeLone and McLean's IS success model.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.9
/
pp.2464-2482
/
2024
The semantic understanding of numbers requires association with context. However, powerful neural networks overfit spurious correlations between context and numbers in training corpus can lead to the occurrence of contextual bias, which may affect the network's accurate estimation of number magnitude when making inferences in real-world data. To investigate the resilience of current methodologies against contextual bias, we introduce a novel out-of-distribution (OOD) numerical question-answering (QA) dataset that features specific correlations between context and numbers in the training data, which are not present in the OOD test data. We evaluate the robustness of different numerical encoding and decoding methods when confronted with contextual bias on this dataset. Our findings indicate that encoding methods incorporating more detailed digit information exhibit greater resilience against contextual bias. Inspired by this finding, we propose a digit-aware position embedding strategy, and the experimental results demonstrate that this strategy is highly effective in improving the robustness of neural networks against contextual bias.
Scene boundary detection is important in the understanding of semantic structure from video data. However, it is more difficult than shot change detection because scene boundary detection needs to understand semantics in video data well. In this paper, we propose a new approach to scene segmentation using contextual information in video data. The contextual information is divided into two categories: local and global contextual information. The local contextual information refers to the foreground regions' information, background and shot activity. The global contextual information refers to the video shot's environment or its relationship with other video shots. Coherence, interaction and the tempo of video shots are computed as global contextual information. Using the proposed contextual information, we detect scene boundaries. Our proposed approach consists of three consecutive steps: linking, verification, and adjusting. We experimented the proposed approach using TV dramas and movies. The detection accuracy of correct scene boundaries is over than 80%.
This study analized the strategies in beginning readers by age and reading ability. Sixty 4-and 5-year old subjects took a reading test based on Bsatjes & Brown(1997) and Park, et a1.(1989). They read contextual and non-contextual storybooks. Errors in oral reading were recorded as mispronunciations, substitutions, omissions, insertions, teacher-assistance and self-corrections. Mispronunciations and substitutions were Specifically evaluated for graphic and contextual reading strategies. Data were analyzed by percentage and mean. Results revealed that children made more mispronunciation errors in reading the non-contextual story book. They used graphic information more than contextual information. Fine-year olds and high-level readers developed the use of graphic and contextual cues simultaneously.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.16
no.2
/
pp.61-82
/
2005
It is essential to describe information on a person, family or corporate body that is responsible for creation of archives in providing archival contextual information. This paper discusses the establishment of contextual information based on the authority control of creators of archives by using international standards such as ISAAR (CPF) : International Standard Archival Authority Record for Corporate Bodies, Persons, and Families, Second edition and EAC(Encoded Archival Context). It introduces the LEAF(Linking and Exploring Authority Files) Project in Europe, which presents the model for exchanging and sharing of authority data between libraries, archives and museums by employing EAC. The concluding remarks stress limitations associated with establishing and exchanging of authority files and requirements for the establishment of archival contextual information nationally.
데이터 웨어하우스는 기업의 통합된 데이터의 저장하는 곳이며, 대게는 상당한 규모를 가지고 있다. 또한, 데이터 웨어하우스는 일반적으로 다양한 종류의 데이터를 저장함으로 데이터 웨어하우스에 저장된 데이터는 의사결정 임무에 따라서는 그 질적, 적합성에 차이를 나타내고는 한다. 이러한 데이터 웨어하우스의 특성으로 인해서 때로는 데이터 웨어하우스의 데이터의 효용성이 기업의 의사결정을 지원하는데 있어 제한적일 수 있다. 정보 시스템의 문헌에는 데이터의 질이 의사결정 성과에 미치는 영향에 대해서 많이 알려져 있지 않다. 그래서, 본 연구는 contextual data(상황적 데이터)의 질과 업무의 복잡성이 의사결정 성과에 미치는 영향에 대해서 탐구해보고자 한다. Contextual data의 질과 업무의 복잡성이 의사결정의 성과에 미치는 영향을 조사하기 위하여 웹을 기반으로 하는 데이터 웨어하우스를 이용하는 실험을 실행했다. 연구의 결과는 contextual data의 질이 의사결정의 성과에 영향을 미친다는 것을 통계적으로 보여주었다. 이러한 연구결과는 의사결정자의 의사결정 성과를 향상시키기 위해서는 데이터 웨어하우스의 contextual data의 질을 향상시켜야한다는 것을 제시하고 있다.
Objectives: To examine whether the socioeconomic characteristics of communities (contextual effects) are related to the self-rated health of community residents after controlling individual characteristics (compositional effects). Methods: A linked data set including information on individuals from raw data of 1998 Korean National Health and Nutrition Survey(KNHNS) and information on the regions where the individuals lived from the socioeconomic statistical indices of Si-Gun-Gu (city-county-ward) in 1998 was established. The contextual factors of communities were generated from these socioeconomic indices through factor analysis. The contextual effects of community over and above the individual characteristics on the self-rated health were investigated using multilevel analysis. Results: The contextual factors of the community expressed as the factor scores have influence on the self-rated health of their residents above the compositional factors. When the communities were categorized into 5 groups (highest, high, middle, low, lowest) according to each of their factor scores, for factor 1 reflecting urbanization reversely, the residents of the communities that had the high, middle, and low factor scores showed significantly poor subjective health status than the residents of the lowest (most urbanized) group. For factor 2 reflecting community services and health resources, the subjective health status of the residents gradually became poorer when the group went from the highest to the lowest, and the low and lowest groups showed a significant difference. For factor 3 reflecting the manufacturing industry, as compared with the communities that have the highest factor scores, the other 4 groups showed significantly poorer subjective health status. And for factor 4 reflecting the scale of the regional government, as compared with the middle group, the rest of the 4 groups showed significantly better self-rated health. Conclusions: There existed regional contextual effects on their residents' health in Korean adults. To make policies tackling these contextual effects possible, more elaborate researches to find more specific factors and to explain the mechanisms of how health is influenced by the contextual factors are needed.
As personal devices and pervasive technologies for interacting with networked objects continue to proliferate, there is an unprecedented world of scattered pieces of contextualized information available. However, the explosive growth and variety of information ironically lead users and service providers to make poor decision. In this situation, recommender systems may be a valuable alternative for dealing with these information overload. But they failed to utilize various types of contextual information. In this study, we suggest a methodology for context-aware recommender systems based on the concept of contextual boundary. First, as we suggest contextual boundary-based profiling which reflects contextual data with proper interpretation and structure, we attempt to solve complexity problem in context-aware recommender systems. Second, in neighbor formation with contextual information, our methodology can be expected to solve sparsity and cold-start problem in traditional recommender systems. Finally, we suggest a methodology about context support score-based recommendation generation. Consequently, our methodology can be first step for expanding application of researches on recommender systems. Moreover, as we suggest a flexible model with consideration of new technological development, it will show high performance regardless of their domains. Therefore, we expect that marketers or service providers can easily adopt according to their technical support.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.