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Abstract 

 
The semantic understanding of numbers requires association with context. However, powerful 
neural networks overfit spurious correlations between context and numbers in training corpus 
can lead to the occurrence of contextual bias, which may affect the network’s accurate 
estimation of number magnitude when making inferences in real-world data. To investigate 
the resilience of current methodologies against contextual bias, we introduce a novel out-of-
distribution (OOD) numerical question-answering (QA) dataset that features specific 
correlations between context and numbers in the training data, which are not present in the 
OOD test data. We evaluate the robustness of different numerical encoding and decoding 
methods when confronted with contextual bias on this dataset. Our findings indicate that 
encoding methods incorporating more detailed digit information exhibit greater resilience 
against contextual bias. Inspired by this finding, we propose a digit-aware position embedding 
strategy, and the experimental results demonstrate that this strategy is highly effective in 
improving the robustness of neural networks against contextual bias. 
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1. Introduction 

Understanding numbers in text demands contextual consideration, as demonstrated by the 
multiple meanings of “7” in “Tom woke up at 7 a.m. and bought 7 apples”. Language models 
like BERT [1] and T5 [2] use contextual encoding to comprehend the semantics of numbers, 
but this approach may lead to inaccurate estimations of number magnitude. Language models, 
like humans, may misjudge number magnitude due to contextual factors. For instance, when 
asked which is heavier between 1000g of iron and 1000g of cotton, untrained children often 
overestimate the weight of iron and underestimate the weight of cotton because the context of 
iron usually involves larger numbers than the context of cotton. When the context surrounding 
a number interferes with accurate magnitude estimation, we refer to this phenomenon as 
contextual bias. Our paper demonstrates that deep learning methods using contextual encoding 
are susceptible to this bias, resulting in inaccurate estimations of number magnitude. 

Bias is extensively prevalent in deep learning [3, 4]. Contextual bias can arise when a 
powerful network overfits spurious correlations that are commonly present in the training 
corpus due to corpus biases. As a result, the network may perform poorly on new data that 
does not exhibit the same biases as the training corpus. Specifically, prior research implies that 
deep learning models can capture the correlation between context and number magnitude. For 
instance, [5] discovered that pre-trained language models could produce appropriate noun 
scalar sizes based on contextual inputs. This is because neural networks have powerful fitting 
capabilities that enable them to memorize all correlations and minimize training errors [6, 7, 
8]. Furthermore, [9, 10] revealed the prevalent biases in the existing training corpus, including 
reporting bias and polysemy bias. As depicted in Fig. 1, the English corpus primarily collected 
from the Northern Hemisphere Internet creates a correlation between July and high 
temperatures. This correlation can lead to erroneous predictions when neural networks with 
strong fitting ability are trained on such a biased corpus and applied to real-world data from 
the Southern Hemisphere. 

To assess the resilience of current methodologies against contextual bias, we introduce an 
out-of-distribution numerical comprehension dataset that features specific correlations 
between contextual cues and numerical values in the training data, which are not present in the 
test data. We select number-related question-answering as the benchmark task due to its 
complexity, involving multiple types of inquiries. To answer such questions, models must 
possess a genuine comprehension of numbers, as well as the capacity to learn numerical 
reasoning through textual descriptions. In the proposed dataset, through our deliberate design, 
there is a correlation between context and numbers in the training set, while in the test set, this 
correlation is distorted. When models overfit spurious correlations between context and 
numbers to minimize the training error, their reliance on these correlations can lead to poor 
performance when making inferences. 

Using our proposed dataset, we assess the robustness of various numerical encoding and 
decoding methods when confronted with contextual bias. All methods are described in the 
evaluation experiment section below. We observe that numerical encoding methods, which 
include more detailed digit information, exhibit greater resilience against contextual bias. For 
instance, the digit-aware encoding method outperforms other encoding methods in out-of-
distribution scenarios, yielding superior outcomes. 

Based on our findings, we propose a digit-aware position embedding strategy, which can 
be integrated into language models. In specific, we add an additional vector encoding for digit 
positions on top of the original position embedding in the language model. This vector can 
more explicitly provide the magnitude meaning of each digit in each number’s place value. 
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The experiments demonstrate that employing the digit-aware position embedding strategy can 
enhance the robustness of models against contextual bias. 

Below, we summarize the contributions of this paper. 
(1) We introduce a novel out-of-distribution number-related question-answering task that 

can be utilized to assess the resilience of models against contextual bias. 
(2) We assess the resilience of various numerical encoding and decoding methods against 

contextual bias and make a surprising observation that the encoding methods that incorporate 
more digit information exhibit greater robustness. 

(3) Building on this observation, we propose a digit-aware position embedding strategy that 
offers explicit magnitude meaning for each digit. Our experiments confirm that the digit-aware 
position embedding strategy is highly effective in enhancing the model’s robustness against 
contextual bias. 

The remainder of this paper is structured as follows. Section 2 provides an overview of the 
related work. Section 3 introduces the dataset constructed for this study in detail. Section 4 
presents the experiments conducted to evaluate different encoding and decoding methods, 
along with the experimental outcomes and analysis. Section 5 introduces our proposed 
numerical position embedding strategy. Finally, Section 6 concludes the paper and provides a 
glimpse into future directions. 

 

 
Fig. 1. A visual explanation of contextual bias. The model trained with the northern hemisphere 

corpus will be influenced by “July” when making inferences on the southern hemisphere corpus and 
incorrectly predicts the masked position as a large number (like 32). 

2. Related Work 

2.1 Numerical Encoding 
Numbers, like words, are present in almost all documents and often provide much hidden 
information. However, relatively little attention has been paid to numbers in text, and many 
systems encode numbers as unknown tokens or ignore them [11, 12]. Several works have 
explored different methods of string-based numerical encoding, encoding numbers from 
different granularity levels [1, 13, 14], using scientific notation to emphasize information 
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about the exponents and mantissa of numbers [5, 15], and explicitly enumerating the semantics 
of digit positions [16, 17]. Other works have explored methods of real-based numerical 
encoding [18, 19, 20]. However, we focus on the former in this work. This is because the real-
based encoding methods only model numbers through various numerical computations; the 
string-based encoding method encodes numbers in their surface form, and the encoding object 
is the numbers themselves, which is more consistent with the original purpose of our 
exploration. 

2.2 Impact of Context 
Context is a crucial element in machine learning as it can provide valuable information that 
contributes to better comprehension and utilization of data. Several studies have indicated that 
contextual information is beneficial in improving the performance of neural networks on 
various tasks, such as hate speech detection [21, 22, 23], depression detection [24], and entity 
disambiguation [25]. However, the introduction of context does not always guarantee 
performance improvements. For instance, over-reliance on context to solve classification 
problems can lead to model flaws [26], longer contexts may hinder attention learning and 
result in poor model performance [27], and context may amplify perceptible toxicity [28]. In 
contrast to these works, our study focuses on investigating the impact of context on neural 
networks' ability to estimate the magnitude of numbers. 

2.3 Numerical Question-answering 
The reading comprehension task has seen significant progress in the last few years, so much 
that the state-of-the-art models in many related datasets have surpassed human performance 
[29, 30, 31]. Nevertheless, existing models still struggle with more complex numerical 
reasoning tasks [32, 33]. [34] proposed a numerical question-answering dataset. The only 
supervision provided is for question-answering pairs, and the model must learn to reason 
numerically, while learning to read and comprehend. However, the numerical operations in 
this dataset involve only straightforward addition and subtraction. Most current models do not 
actually understand numbers, relying only on symbolic prediction and span extraction to 
answer questions [35, 36, 37]. In contrast, our dataset has more types of numerical operations 
and an additional out-of-distribution test set that can be used to probe whether the models 
actually understand numbers and perform correct numerical reasoning. 

3. Dataset 
In this section, we provide a comprehensive overview of the dataset and elaborate on the 
intricacies of its construction process. 

3.1 Dataset Overview 
We proposed a unique number-related question-answering dataset that demonstrates a specific 
correlation between context and numbers within the training set, but this correlation is 
disrupted in the OOD test set, as shown in Fig. 2. In the training and IID test sets, there is a 
correlation between the contextual word plane and the numbers, i.e., the price of the plane 
tends to be considerable numbers. However, in the OOD test set, the numbers around the plane 
are significantly smaller, as the plane here represents the “toy plane” rather than the “real plane” 
in the training set. This intricate design allows us to investigate the robustness of the model 
against contextual bias particularly when the correlations between context and numbers in real-
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world data differ from those in the training corpus. Table 1 provides the percentages of the 
different parts of our dataset. Following, we will present our dataset in two aspects to give a 
comprehensive understanding. 
 

 
Fig. 2. The uniqueness of the OOD test set. In the training and IID test sets, the word “plane” is 

always associated with large numbers, but this correlation is disrupted in the OOD test set. 
 
 

Table 1. The percentages of different parts of the dataset. 
Type of data Percent Number 

Training 76.9 73920 

Validation 7.7 7392 

IID test 7.7 7392 

OOD test 7.7 7392 

 

3.1.1 Topic and Style 
The main content of the dataset we constructed in this work is the passage descriptions and 
questions about the different dimensions of the entity (e.g., price, length, mass, and speed). 
Each passage in the dataset consists of several sentences that describe the values of these 
dimensions of entities, along with the corresponding degree of variation. Additionally, each 
passage is accompanied by multiple questions that require the model to comprehend the 
numerical values and perform accurate numerical reasoning by connecting the questions to the 
information provided in the passage. For instance, Table 2 presents an example of the price 
dimension in the dataset. The passage outlines the original price of the jacket, as well as any 
subsequent price changes. The corresponding questions inquire about the current price of the 
jacket and the extent of the price change. 
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Table 2. An example of the price dimension. The passage describes the price of the entity’s price, and 
the corresponding two problems examine numerical reasoning capability. 

Passage: Cary bought a jacket, and the price of the jacket was 172.53 dollars. Now 
the price of the jacket has changed to 112% of the previous price. 
Question1: How much is the jacket now? 
Answer1: 193.23 
Type: multiplication 
Question2: How much has the price of the jacket changed? 
Answer2: 20.7 
Type: hybrid compute 

 

3.1.2 Dataset Diversity  
Our dataset exhibits a high degree of diversity while boasting a large volume. It comprises a 
total of 154 unique entities distributed across four distinct dimensions. Furthermore, our 
dataset encompasses various types of problems, including addition, subtraction, multiplication, 
division, and mixed operations. Fig. 3 shows the percentage of different question types in the 
training set. [16] had generated a numerical question-answering dataset called textual data for 
model pre-training. Table 3 provides a comparison of our dataset with textual data in terms of 
diversity. It can be seen that our dataset covers a broader range of fields, features a more 
significant number of entities, and includes more complex numerical operations. In contrast, 
textual data is limited to two fields (history and the National Football League) and a few dozen 
entities. Moreover, it only involves two simple operations: addition and subtraction. 
 

 
Fig. 3. The percentage of different question types in the training set. 

 
Table 3. The comparison of the diversity between our dataset and textual dataset. 

Diversity categories Our dataset Textual dataset 

Entities 154 16 

Fields 4 2 

Numerical operations 5 2 
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3.2 Construction Process 
In the following, we outline our dataset construction process and approach. Given the diverse 
dimensions of entities we focus on, gathering such a dataset from the web can be challenging. 
To ensure precision and control over the entire dataset generation process, we employ a 
template-based approach. Specifically, we begin by creating passage and question templates. 
Then, we gather relevant contextual information. Finally, we use this contextual information 
to instantiate the templates and generate the final dataset. 

3.2.1 Template Creation 
We created multiple passages and question templates for each dimension inspired by the 
framework proposed by [38]. In this framework, text can be mapped as a world state 
representation consisting of containers, entities, and quantities. We replaced the quantity in 
the state with the entity’s dimension value. Fig. 4 demonstrates the process of creating the 
templates with the modified framework. We first constructed some fragments using abstract 
and regular nouns following the proper syntactic structure, which describe the observations or 
changes of the entity’s dimension values in the container. Then, we spliced these fragments 
sequentially to form the passage template, and each splicing brought about a transition of the 
world state. Finally, we derived question templates based on the state transitions of the passage 
template, which are queries about the entity’s current state. Table 4 presents a subset of the 
templates for each of the four dimensions, which includes several abstract nouns such as 
CONT (representing a person), ENT (representing an entity), VERB (representing a verb), and 
NUM (representing the value of the dimension). 
 

 
Fig. 4. The whole process of creating passage and question templates using the world state 

framework. 
 

3.2.2 Context Collection 
While our templates provide a structure and style for the sentences in our dataset, contextual 
information is still required to generate complete sentences. To address this, we collected sets 
of words that the abstract nouns represent from multiple sources. We obtained the set of ENT 
from [9], who developed an unsupervised method for collecting quantitative information from 
web data and used it to create Distribution over Quantities (DoQ), which contains the exact 
numerical distribution of a large number of nouns in different dimensions. We collected a total 
of 154 nouns from DoQ, where each noun comes with the corresponding distribution 
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information, such as range, mean, and median. In addition, we collected 16 common English 
names and 11 verbs from the network as the sets of CONT and VERB, respectively. By 
combining our templates with this contextual information, we were able to generate complete 
sentences for our dataset. 
 
Table 4. A subset of templates for all dimensions. Where colored fonts are abstract nouns that refer to 

different objects. 
Dimensions Passages Questions 

Price 
CONT-1 VERB-POS a ENT-1, and the price of the 
ENT-1 was NUM-1. Now the price of ENT-1 VERB-
CHG to NUM-2 of the previous price. 

How much is the ENT-
1 now? 

Length 

CONT-1 VERB-POS a ENT-1 and a ENT-2, the length 
of the ENT-1 is NUM-1, the length of the ENT-2 is 
NUM-2. CONT-2 also VERB-POS a ENT-1, the length 
of CONT-2’S ENT-1 is NUM-3 longer than CONT-1’S 
ENT-1. 

How long is the CONT-
2’S ENT-1? 

Mass 
CONT-1 VERB-POS a ENT-1 weighing NUM-1 and a 
ENT-2 weighing NUM-2. After a period of time, the 
weighing of the ENT-1 VERB-ENGCHG by NUM-3. 

How much does the 
ENT-1 weigh now? 

Speed 

At the beginning, the average speed of the ENT-1 was 
NUM-1, after a while, the speed of the ENT-1 VERB-
POSCHG by NUM-2. The speed of the ENT-2 is NUM-
3. 

What is the speed of the 
ENT-1 now? 

 

3.2.3 Template Instantiation 
After obtaining the templates and contexts, we used the contextual information to instantiate 
these templates. First, we randomly selected entities, containers, and verbs from the collected 
sets of words. We then replaced the corresponding abstract nouns in the templates with these 
terms. To generate NUMs in the templates, we used the perc_25 and perc_75 from the 
distribution information. It is crucial to ensure that all generated numbers are within the 
distribution range of the corresponding entities to obtain a correct and stable distribution of 
numbers. We generated all numbers with the entity’s own distribution for the training and IID 
test sets. However, for the OOD test set, we shuffled the distributions of all entities of the same 
dimension. This procedure resulted in different correlations between contexts and numbers in 
the OOD test set compared to the training set, as illustrated in Fig. 2. Finally, we analyzed the 
instantiated passages and questions to obtain all the answers by determining the category of 
the questions and performing numerical operations on the relevant numbers in the passages. 

4. Evaluation and Results 
We assessed the robustness of various numerical encoding and decoding methods against 
contextual bias on our proposed dataset. 

4.1 Basic Architecture 
We chose the GenBERT and NumNet [35] models for our evaluation experiments as the basic 
architectures since they have demonstrated strong text comprehension and numerical 
reasoning capabilities. Notably, both of these models achieved impressive results on the 
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numerical question-answering dataset known as DROP [34]. 

4.1.1 GenBERT 
The GenBERT model combines the Transformer encoder-decoder architecture [39] with the 
pre-trained language model, as depicted in Fig. 5. In contrast to the original BERT model, 
GenBERT distinguishes itself by incorporating both an encoder and a decoder, which are 
initialized with the bert-base weights. To incorporate BERT’s representations of the input text 
during decoding, the weights of the model’s encoder and decoder are interconnected. When 
generating numerical output, the decoder employs a decoding strategy similar to the 
Transformer, wherein the output from the previous step serves as the input for the next step, 
with a total of 20 decoding steps. In addition, the model also includes an answer type head and 
two span extraction heads. The input for the answer type head is the last layer’s hidden state 
corresponding to the first token in the sequence. Its output determines whether the answer type 
originates from span extraction or decoder generation. The span extraction heads provide 
positional information, explicitly indicating the starting and ending positions of the answer 
within the input text. We recommend the reader refer to [14] for more details. 
 

 
Fig. 5. The architecture of GenBERT. 

4.1.2 NumNet 
The NumNet model consists of three components: encoding, reasoning, and prediction 
modules, as depicted in Fig. 6. The encoding module uses a pre-trained language model, 
Roberta [40], which is an enhanced version of BERT with a more significant number of model 
parameters and more training data for encoding input passages and questions. The reasoning 
module, a numerically-aware graph neural network (NumGNN), constructs a heterogeneous 
directed graph to encode numerical relationships between numbers in the input text. The 
prediction module contains span prediction and symbol prediction. Since the NumNet model 
uses a symbolic prediction strategy (i.e., assigning a plus sign, minus sign, or zero to each 
number) when answering numerical operation questions, this strategy is unsuitable for 
answering certain question types, such as multiplication and division in our dataset. We 
modified the symbolic prediction part to MLP, which uses regression to predict numbers 
directly to answer arbitrary types of numerical reasoning questions. We recommend the reader 
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refer to [35] for more details. 
 

 
Fig. 6. The architecture of NumNet. 

4.2 Encoding and Decoding Methods 
We evaluated several common numerical encoding and decoding methods for evaluation. 
Table 5 shows these methods and provides some explanations. 

(1) Character: Splitting the numbers into character levels and encoding each digit separately. 
(2) Sub-word: The number is divided into piece-by-piece forms. For example, “1234” is 

divided into “12-34”. 
(3) Digit-aware: Each digit of the number is followed by a token indicating its position in 

the number, giving the model more digit information. 
(4) Left padding: The length of all numbers is uniform by left padding, and we stipulate the 

maximum padding length as 10. 
(5) Underscore: The numbers are separated by an underscore token, and the model can 

obtain information about the location of the digit by counting the number of underscores. 
(6) Scientific notation: Representing a number in scientific notation form provides the 

model with direct information on the exponent and mantissa of the number. 
(7) Digit-by-digit: When decoding the numbers, using the digit-by-digit generation strategy, 

we stipulate that the maximum decoding length is 20. 
(8) Regression: Using a fully connected layer with an output size of 1 as the decoder to 

directly predict answers. 
(9) Log value: Unlike the regression decoding, this method predicts at log scale and then 

computes the final answer by an exponential function. 
We built on the basic architectures and modified the corresponding encoders and decoders 

sequentially to evaluate the robustness of the pre-trained language models against contextual 
bias when employing the aforementioned numerical encoding and decoding methods. 
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Table 5. Different numerical encoding and decoding methods. 
Encoding Example 

Character 8 1 5 . 1 

Sub-word 8 15 . 1 

Digit-aware 8 [hundred] 1 [ten] 5 [unit] . 1 [tenth] 

Left padding 0 0 0 0 8 1 5 . 1 

Underscore 8_1_5_._1 

Scientific notation 8 . 1 5 1 e 2 

Decoding Detail 

Digit-by-digit Maximum decoding step is 20 

Regression Output numbers directly via MLP 

Log value Predicting numbers at log scale 

4.3 Experimental Setup 
We evaluated the numerical encoding and decoding methods based on the GenBERT and 
NumNet models in two settings: (1) modifying the encoder to the different numerical encoding 
methods listed in Table 5 while keeping the decoder unchanged, and (2) modifying the 
decoder to the different numerical decoding methods listed in Table 5 while keeping the 
encoder unchanged. 

We use mean absolute error (MAE) as the evaluation metric. The formula for calculating 
MAE is as follows: 

 
^

1

1 ( )
m

i i
i

MAE y y
m =

= −∑  (1) 

where m  denotes the number of samples, iy  denotes the label value, and 
^

iy  denotes the 
predicted value. A smaller value of MAE indicates that the model’s prediction is more accurate. 

4.4 Main Results 
Tables 6 and 7 present the results of various numerical encoding and decoding methods on 
our dataset. By comparing the performance of these methods on the IID test set and the OOD 
test set, we can measure their robustness. We observe that both models exhibit notably poorer 
performance on the OOD test set compared to the IID test set, indicating that contextual bias 
severely affects the language model’s capability to estimate number magnitude accurately. In 
addition, the performance of the various methods based on the NumNet model is significantly 
weaker than those based on the GenBERT model. This suggested that the modified NumNet 
model’s numerical understanding and reasoning abilities are relatively limited. 

Based on the data in Table 6, it is apparent that the digit-aware method exhibits significant 
improvement over the baseline method on both models. In particular, on the NumNet model, 
this method achieves the highest performance on both the IID and OOD test sets. This 
observation implies that encoding methods that incorporate more digit information can better 
estimate number magnitude and are more likely to be resilient against contextual bias. 

The scientific notation method demonstrates superior performance on the IID test set, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024                       2475 

implying that providing mantissa and exponent information enables the model to comprehend 
numbers effectively when the distribution of numbers is consistent. However, when there is a 
substantial change in the distribution of numbers, the representation of all numbers changes 
only slightly in the exponent at the end. It may be difficult for the model to capture this 
variation and consequently misinterpret the magnitude of the numbers. 

The sub-word method exhibits extremely poor performance on both test sets, notably 
falling short of methods such as character and digit-aware. We suspect this result from the sub-
word pieces being an inadequate method for encoding numbers, as similar numbers can have 
completely different sub-word divisions. For instance, “1234” is divided into “12-34”, while 
“1250” is divided into “1-250”. 

The models do not perform exceptionally on the test sets when employing the left-padding 
method and even exhibit poorer performance on the IID test set. This suggests that normalizing 
the length of all numbers may hinder the model’s ability to comprehend the quantitative 
aspects of numbers intuitively. 

Table 7 reveals that the regression and log value methods appear to perform well on the 
OOD test set, but this does not necessarily indicate robustness to contextual bias. This is due 
to the limitations of the fully connected layer in capturing the complex relationship between 
context and numbers. Additionally, using a fully connected layer as the decoder to learn 
mathematical operation ability proves challenging, as reflected in their performance on the IID 
test set. 

We are surprised that in most cases the result of the log value is not better than the 
regression. Upon analyzing the prediction results of the model, we observe that while the 
prediction error is minimal at the log scale, even a slight error in the exponential value can 
result in a significant change in the function’s output due to the nature of the exponential 
function. This effect is especially pronounced when the label value is enormous. 
 

Table 6. The performance of different numerical encoding methods on our dataset. 

Basic 
architectures Encoding methods 

MAE 

IID test OOD test 

GenBERT 

Character(baseline) 161.07 10749.49 

Sub-word 332.25 40153.33 

Digit-aware 108.73 6482.43 

Left padding 244.31 7282.53 

Underscore 135.83 10382.3 

Scientific notation 106.02 8649.92 

NumNet 

Sub-word (baseline) 8154.44 67646.09 

Character 5316.24 62869.76 

Digit-aware 4791.35 59482.07 

Left padding 10777.79 60446.56 

Underscore 9622.5 68284.49 

Scientific notation 4996.32 62011.72 

 



2476                                                        Xuehao Du et al.: Probing Effects of Contextual Bias on Number Magnitude Estimation 

Table 7. The performance of different numerical decoding methods on our dataset. 

Basic 
architectures Decoding methods 

MAE 

IID test OOD test 

GenBERT 

Digit-by-digit(baseline) 161.07 10749.49 

Regression 1107.77 2340.68 

Log value 3031.81 3357.63 

NumNet 
Regression(baseline) 8154.44 67646.09 

Log value 16402.98 56915.22 

 

4.5 Contextual Bias Phenomenon 
During our evaluation of numerical encoding and decoding methods, we observe that these 
methods exhibit significant weakness when encountering contextual bias. Fig. 7 exemplifies 
a typical instance of erroneous prediction during OOD testing, where the model’s predicted 
values markedly exceed the actual label values. This can be attributed to the fact that the model 
lacks a true comprehension of the numbers during training, instead remembering that the 
numbers associated with “helicopter” are in the range [111, 241]. Consequently, during the 
OOD test, when the number around “helicopter” in the passage falls outside the distribution 
observed during training, the model’s predictions are influenced by learned correlations, 
leading to the misestimation of a number like 15.17 as being large simply because it appears 
near the term “helicopter”. This phenomenon of contextual bias is widespread during the 
evaluation process, which explains why all the methods presented in Tables 6 and 7 performed 
considerably poorer in the OOD test set than in the IID test set. 
 

 
Fig. 7. An example of a typical wrong prediction during the OOD test. 
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5. Digit-aware position Embedding 
Our observation reveals that encoding methods which incorporate more digit information 
about numbers exhibit improved robustness when confronted with contextual bias during the 
evaluation. Based on this finding, we propose a digit-aware position embedding strategy that 
can be seamlessly integrated into existing language models without complex modifications. 

In Fig. 8, we present the digit-aware position embedding strategy. This strategy involves 
adding an additional vector to the position embedding in the language model to encode the 
position information of each digit in the number. Compared to the original position embedding, 
such an approach can offer an explicit magnitude meaning for each digit. Additionally, for 
other objects in the input text, such as words, symbols, and special tokens, we utilize a uniform 
embedding, which can assist the model in distinguishing the numbers from other input words 
and increase the importance of numbers in the text. 

We utilized this strategy to modify the embedding layers of the GenBERT and NumNet 
models, respectively. The input representation of each number now comprises the sum of 
token embedding, fragment embedding, position embedding, and digit-aware position 
embedding, as per our modification. Given that the numbers in our dataset range up to the 
million level and are accurate to two decimal places, the maximum length of our numerical 
embedding is 9. With these settings, we evaluated the performance of the modified models on 
our dataset and compared it with the original model. 
 

 
Fig. 8. The digit-aware position embedding strategy. Where the vector D encodes the position of the 

digit in the number, providing the model information about the magnitude of each digit. 
 

The experimental results are illustrated in Table 8. We find that the inclusion of digit-aware 
position embedding remarkably reduces the mean absolute error of the models on all test sets, 
which indicates that the strategy effectively enhances the models’ ability to comprehend the 
magnitude of numbers. Furthermore, the modified model outperformed all previously 
evaluated numerical encoding methods, achieving the best performance on the OOD test set. 
This result suggests that the digit-aware position embedding strategy can effectively enhance 
the model’s robustness against contextual bias. 

Fig. 9 demonstrates the performance comparison between the original GenBERT model 
and the model enhanced with the digit-aware position embedding strategy on different 
question types. It is evident that, with the adoption of the novel embedding strategy, the model 
exhibits significantly improved results across all question types, underscoring the efficacy of 
this strategy in enhancing the model’s numerical reasoning capabilities. 
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Table 8. The performance of models after employing the digit-aware position embedding strategy. 

Methodologies 
MAE 

IID test OOD test 

GenBERT 161.07 10749.49 

GenBERT + Digit-aware position embedding 108.69 4945.07 

NumNet 8154.44 67646.09 

NumNet + Digit-aware position embedding 3147.68 46693.24 

 

 
Fig. 9. The performance of the model on different question types. 

6. Conclusion 
In this paper, we introduce a novel out-of-distribution question-answering dataset and employ 
the GenBERT and NumNet models as the basic architectures to evaluate various numerical 
encoding and decoding methods. We demonstrate that deep learning models are susceptible to 
contextual bias to estimate the magnitude of numbers incorrectly. However, we find that 
encoding methods that offer detailed digit information are more resistant to contextual bias. 
We propose a digit-aware position embedding strategy based on this finding and integrate the 
strategy into the current language model. Experimental results confirm its efficacy in 
enhancing the model’s resilience against contextual bias. Our research reveals the substantial 
impact of contextual bias on current pre-trained language models, inspiring further efforts 
from researchers to develop more effective methods to mitigate its influence. 

However, there are some limitations to this study. First, due to the difficulty of collecting 
data in relevant domains, we opted for generating datasets using template-based methods, 
which may not capture the diversity seen in real-world data. Second, we need further 
investigation into whether contextual bias also exist in large language models like ChatGPT 
[41, 42]. In the future, our research will focus on collecting number-related real-world corpora 
and assessing large language models. 
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