• Title/Summary/Keyword: contact stresses

Search Result 316, Processing Time 0.025 seconds

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Effect of stacking sequence of the bonded composite patch on repair performance

  • Beloufa, Hadja Imane;Ouinas, Djamel;Tarfaoui, Mostapha;Benderdouche, Noureddine
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.295-313
    • /
    • 2016
  • In this study, the three-dimensional finite element method is used to determine the stress intensity factor in Mode I and Mixed mode of a centered crack in an aluminum specimen repaired by a composite patch using contour integral. Various mesh densities were used to achieve convergence of the results. The effect of adhesive joint thickness, patch thickness, patch-specimen interface and layer sequence on the SIF was highlighted. The results obtained show that the patch-specimen contact surface is the best indicator of the deceleration of crack propagation, and hence of SIF reduction. Thus, the reduction in rigidity of the patch especially at adhesive layer-patch interface, allows the lowering of shear and normal stresses in the adhesive joint. The choice of the orientation of the adhesive layer-patch contact is important in the evolution of the shear and peel stresses. The patch will be more beneficial and effective while using the cross-layer on the contact surface.

Estimation on a Contact Size Effect in Fretting Fatigue Between Cylindrical Pad and Flat Specimen (실린더형 패드와 평판 시험편간 프레팅 피로의 접촉폭 크기효과에 관한 평가)

  • Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.116-125
    • /
    • 2008
  • In general, fretting is a contact damage process due to micro-slip associated with small amplitude oscillatory movement between two surfaces in contact. Previous studies in fretting fatigue have observed a contact size effect related to contact width. The volume-averaging method of theoretically predicted contact stress fields was required to emulate experimental trends and to predict the observed contact size effects. This contact size effect is captured by the mean values of stresses and strains at the element integration points of FE model and two critical plane models (SWT, FS) in the present paper. It is shown that crack nucleation and fretting fatigue life can be predicted by the FE-based critical plane models.

A Study on Soil Stress and Contact Pressure of Tire (타이어 접지압과 토양속 응력분포에 관한 연구)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2001
  • This study was carried out to investigate the effect of three factors(dynamic load, inflation pressure and multiple passes of the tire) on the contact pressure and the soil stresses under the tire. A series of soil bin experiment was conducted with a 6.00R14 radial-ply tire for sandy loam soil. Tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth were measured for the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.69kPa), and for five different number of passes(1, 2, 3, 4 and 5 pass). The following results were drawn from this study 1) As dynamic load, inflation pressure and number of passes of the tire increased, tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth increased accordingly. Thus increased in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2) The effect of three different factors, or dynamic load, inflation pressure and number of passes of the tire, decreased as the soil depth increase. Consequently, it was found that the soil compaction at a shallow depth in soil is larger than that at deep place in soil. 3) The increase of dynamic load and number of passes increased soil stress exponentially, but the increase of inflation pressure increased soil stress linearly. The effect of tire inflation pressure on soil stress was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load is more important factor affecting soil compaction in comparison to the inflation pressure of tire.

  • PDF

The Development of Partial Model for Thermo-Mechanical Stress Analyses of Part with Coated Layer under Contact Load (접촉하중을 받는 코팅층이 있는 부재의 응력해석을 위한 부분 모델 방법의 개발)

  • Kwon, Young-Doo;Kim, Seock-Sam;Goo, Nam-Seo;Park, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.194-203
    • /
    • 2002
  • This paper is the first step fur thermo-mechanical stress analyses of part with coated layer under contact load. A lot of coated material is applied in many structures to endure severe situation, like thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and so on. In this part we are going to apply the FEM to analyze space parts with a coated layer subjected to a contact load thermo-mechanically. Coating layer is very thin in comparision with the structure, therefore it should take more times and behaviors to analyze whole model. In these reason we develop the FEM method of analyzing part with coated layer under contact load using partial model. Steady state temperature distribution of the part is obtained first, and then we apply quasi-static external load on the part. To obtain the final stage of solution, we compute the total solution, and by subtracting the thermal strain from the total ones we get the mechanical strains to compute stresses of the parts. In using the FEM, one has to discretize the model into many sub-domain, finite elements. The method is consisited of two steps. First step is to analyze the whole model with rather coarse meshes. Second step we cut a small region near the loading point, and analyze with very fine meshes. This method is allowable by the Saint-Venant's principle. And then, we finally shall check the therma1 load on the stresses of the space part with coating layer with or without substrate cracks. Then, we predict the actual behaviors of the part used in space.

The receding contact problem of two elastic layers supported by two elastic quarter planes

  • Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.241-255
    • /
    • 2013
  • The receding contact problem for two elastic layers whose elastic constants and heights are different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral Transform Technique. The problem is reduced to a system of singular integral equations in which contact pressures are the unknown functions by using integral transform technique and boundary conditions of the problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi integration formulation. Numerical results are obtained for various dimensionless quantities for the contact pressures and the contact areas are presented in graphics and tables.

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

Characterization of the Stresses in the Luting Cement Layer Affected by Location of the Occlusal Points and Loading Direction on a Full Veneer Crown (유한요소법을 이용한 전부주조관의 교합점 위치와 하중방향이 시멘트층 내 응력에 미치는 영향)

  • Lee, Jung-Hoon;Lee, Kyu-Bok;Lee, Cheong-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2008
  • The objective of this study was to test effects of (1) where the occlusal contact points locate on a full veneer crown, and (2) which direction the contact forces are directed to, on the stresses within the luting cement layer that might suffer microfracture. A total of 27 finite element models were created for a mandibular first molar, combining 9 different locations of the occlusal contact points and 3 different loading directions. Type 3 gold alloy was used for crown material with a chamfer margin, and the luting cement material was glass ionomer cements in uniform thickness of $75{\mu}m$. Modeled crowns were loaded at 100 N. Different patterns in the cement stress were observed in the vicinity of the buccal and lingual margins. Whereas, the peak stress in buccal margin occurred approximately 0.5 mm away from the external surface, the highest stress in lingual margin was observed at approximately 1 mm. Significantly different distribution of stresses was recorded as a function either of the location of the occlusal contact points or of the loading direction. Higher stresses were produced by more obliquely acting load, and when the loaded point was in the vicinity of the cusp tip.

Contact Stress Evaluations for the Ball Groove of Weiss Type Constant velocity joint (Weiss형 등속조인트 볼 홈의 접촉응력평가)

  • 김완두;이순복
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 1989
  • For the life prediction and fatigue failure prevention of the constant velocity joint, the maximum equivalent stress and its location in depth from the contact area are essential. These values give the fundamental information to determine the depth of the surface hardening treatment at the contact area. Contact stresses are evaluated at the surface and subsurface of the ball groove of the Weiss type constant velocity joint. The maximum contact pressure and the maximum equivalent stress are obtained. The effects of various parameters such as the radius of ball groove, friction coefficient, and residual stress are studied. The maximum equivalent stress and the maximum contact pressure increase as the radius of the ball grove increases. The location of the maximum equivalent stress moves toward surface as the friction coefficient increases. It was also found that the maximum equivalent stress becomes minimum when the compressire residual stress is about 0.16 times of the maximum contact pressure.