DOI QR코드

DOI QR Code

Effect of stacking sequence of the bonded composite patch on repair performance

  • Beloufa, Hadja Imane (Laboratoire de Modelisation Numerique et Experimentale des Phenomenes Mecaniques, Faculty of Sciences and Technology, University Abdelhamid Ibn Badis of Mostaganem) ;
  • Ouinas, Djamel (Laboratoire de Modelisation Numerique et Experimentale des Phenomenes Mecaniques, Faculty of Sciences and Technology, University Abdelhamid Ibn Badis of Mostaganem) ;
  • Tarfaoui, Mostapha (Laboratoire Brestois de Mecanique et des Systemes, ENSTA Bretagne) ;
  • Benderdouche, Noureddine (SEA2M, Faculty of Sciences and Technology, University Abdelhamid Ibn Badis of Mostaganem)
  • Received : 2015.10.05
  • Accepted : 2015.12.24
  • Published : 2016.01.25

Abstract

In this study, the three-dimensional finite element method is used to determine the stress intensity factor in Mode I and Mixed mode of a centered crack in an aluminum specimen repaired by a composite patch using contour integral. Various mesh densities were used to achieve convergence of the results. The effect of adhesive joint thickness, patch thickness, patch-specimen interface and layer sequence on the SIF was highlighted. The results obtained show that the patch-specimen contact surface is the best indicator of the deceleration of crack propagation, and hence of SIF reduction. Thus, the reduction in rigidity of the patch especially at adhesive layer-patch interface, allows the lowering of shear and normal stresses in the adhesive joint. The choice of the orientation of the adhesive layer-patch contact is important in the evolution of the shear and peel stresses. The patch will be more beneficial and effective while using the cross-layer on the contact surface.

Keywords

References

  1. Baker, A. and Jones, R. (1988), Bonded Repair of Aircraft Structures, Martinus Nijhoff, Dordrecht.
  2. Atluri, S.N. (1997), Structural integrity and durability, Tech Science Press, Forsyth, Georgia, USA.
  3. Rose, L.R.F. (1982), "A cracked plate repaired by bonded reinforcement", Int. J. Fract.,18, 135-44. https://doi.org/10.1007/BF00019638
  4. Chow, W.T. and Atluri, S.N. (1997), "Composite patch repairs of metal structures: adhesive nonlinearity, thermal cycling, and debonding", AIAA J., 35(9), 1528-1535. https://doi.org/10.2514/2.7481
  5. Lena, M.R., Klug, J.C. and Sun, C.T. (1998), "Composite patches as reinforcements and crack arrestors in aircraft structures", J. Aircraft, 35(2), 318-323. https://doi.org/10.2514/2.2302
  6. Ouinas, D., Serier, B. and Bachir Bouiadjra, B. (2003), "Calcul numerique des parametres de rupture d'une plaque fissuree renforcee par un patch metallique circulaire en mode I et mode mixte", Revue des Composites et des Materiaux Avances, 12(2),.
  7. Baker, A. (1997), "Growth characterisation of fatigue cracks repaired with adhesively bonded boron/epoxy patches", Proceedings of International Conference on Fracture, ICF-9, 117-128.
  8. Baker, A. and Chester, R.J. (1993), "Recent advances in composite repair technology for metallic aircraft components", Proceedings of the International Conference on Advanced Composite Materials, 45-9.
  9. Chung, K.H. and Yang, W.H. (2002), "Fracture mechanics analysis of the bonded repair of skin/ stiffener with an inclined central crack", Compos. Struct., 55, 269-76. https://doi.org/10.1016/S0263-8223(01)00163-5
  10. Bachir Bouiadjra, B., Achour, T., Berrahou, M., Ouinas, D. and Feaugas, X. (2010a), "Numerical estimation of the mass gain between double symmetric and single bonded composite repairs in aircraft structures", Mater. Des., 31, 3073-7. https://doi.org/10.1016/j.matdes.2010.01.006
  11. Bachir Bouiadjra, B. Fekirini, H., Belhouari, M., Serier, B., Benguediab, B. and Ouinas, D. (2010.b), "SIF for double-and single-sided composite repair in mode I and mixed mode", J. Reinf. Plast. Compos., 30, 416-24.
  12. Albedah, A., Bachir Bouiadjra, B., Aminallah, L., Es-Saheb, M. and Benyahia, F. (2011), "Numerical analysis of the effect of thermal residual stresses on the performances of bonded composite repairs in aircraft structures", Compos. Part B, 42, 511-6.
  13. Mhamdia, R., Bachir Bouiadjra, B., Ouddad, W., Feaugas, X. and Touzain, S, (2011), "Stress intensity factor for repaired crack with bonded composite patch under thermo-mechanical loading", J. Reinf. Plast. Compos., 30, 416-24. https://doi.org/10.1177/0731684410397899
  14. Bachir Bouiadjra, B., Belhouari, M. and Serier, B. (2002), "Computation of the stress intensity factor for repaired cracks in mode I and mixed mode", Compos. Struct., 54, 401-406.
  15. Ouinas, D., Bachir Bouiadjra, B. and Serier, B. (2007), "The effects of disbond on the stress intensity factor of aluminium panels repaired using composite materials", J. Comp. Struct., 78, 278-284. https://doi.org/10.1016/j.compstruct.2005.10.012
  16. Ouinas, D., Hebbar, A., Bachir Bouiadjra, B., Belhouari, M. and Serier, B. (2009), "Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch", Compos. Part B, 40, 804-810. https://doi.org/10.1016/j.compositesb.2009.06.002
  17. Chung, K.H., Tang, W.H. and Cho, M.R. (2000), "Fracture mechanics analysis of cracked plate repaired by composite patch", Key Eng. Mater., 183-187, 43-48. https://doi.org/10.4028/www.scientific.net/KEM.183-187.43
  18. Ratwani, M.M. (1978), "Analysis of cracked, adhesively bonded laminated structures", Paper No. 78483R, AIAA/ASME 19th Structures, Structural Dynamics and Materials Conference, Bethesda, MD 988-994. 1290 Avenue of the Americas, New York, NY 10019.
  19. Denney, J.J. and Mall, S. (1997), "Characterization of disbond effects on fatigue crack growth behavior in aluminum plate with bonded composite patch", Eng. Fract. Mech., 57(5), 507-525. https://doi.org/10.1016/S0013-7944(97)00050-7
  20. Ouinas, D. and Hebbar, A. (2010a), "Full width disbonding effect on repaired cracks in aircraft structural panels with bonded composite patches", J. Therm. Compos. Mater., 23, doi: 10.1177/0892705708103403.
  21. Ouinas, D. (2010b), "Effect of disbonding between a composite patch and a cracked aluminum plate on the stress intensity factor", J. Reinf. Plast. Compos., 29, doi: 10.1177/0731684409349555.
  22. Ouinas, D., Bachir Bouiadjra, B., Himouri, S. and Benderdouche, N. (2012), "Progressive edge cracked aluminium plate repaired with adhesively bonded composite patch under full width disbond", Compos. Part B, 43, 805-811. https://doi.org/10.1016/j.compositesb.2011.08.022
  23. Bachir Bouiadjra, B., Oudad, W., Albedah, A., Benyahia, F. and Belhouari, M. (2012), "Effects of the adhesive disbond on the performances of bonded composite repairs in aircraft structures", Mater. Des., 37, 89-95. https://doi.org/10.1016/j.matdes.2011.12.028
  24. Mhamdia, R., Serier, B., Bachir Bouiadjra, B. and Belhouari, M. (2012), "Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures", Compos. Part B, 43, 2012, 391-397. https://doi.org/10.1016/j.compositesb.2011.08.047
  25. Gu, L., Ram, A., Kasavajhala, M. and Zhao, S. (2011), "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs", Compos. Part B, 42, 505-510. https://doi.org/10.1016/j.compositesb.2010.11.014
  26. Albedah, A., Bachir Bouiadjra, B., Mhamdia, R., Benyahia, F. and Es-Saheb, M. (2010), "Comparison between double and single sided bonded composite repair with circular shape", Mater. Des., 32, 996-1000.
  27. Srilakshmi, R. and Ramji, M. (2014), "Experimental investigation of adhesively bonded patch repair of an inclined center cracked panel using DIC", J. Reinf. Plast. Compos., 33(12), 1130-1147.
  28. Ramji, M., Srilakshmi, R. and Bhanu Prakash, M. (2013), "Towards optimization of patch shape on the performance of bonded composite repair using FEM", Compos. Part B, 45, 710-720. https://doi.org/10.1016/j.compositesb.2012.07.049
  29. Kashfuddoja, M. and Ramji, M. (2014), "Design of optimum patch shape and size for bonded repair on damaged carbon fibre reinforced polymer panels", Mater. Des., 74, 174-183.
  30. Ramji, M. and Srilakshmi, R. (2012), Design of composite patch reinforcement applied to mixed-mode cracked panel using finite element analysis, J. Reinf. Plast. Compos., 31(9), 585-595. https://doi.org/10.1177/0731684412440601
  31. Bachir Bouiadjra, B., Ouinas, D., Serier, B. and Benderdouche, N. (2008), "Disbond effects on bonded boron/epoxy composite repair to aluminum plates", Compos. Mater. Sci., 42(2), 220-227. https://doi.org/10.1016/j.commatsci.2007.07.008
  32. Chalkley, P. and Rider, A. (2003), "Toughening boron/epoxy bonded joints using the resin film infusion technique", Part A: Appl. Sci. Manuf., 34(4), 341-348. https://doi.org/10.1016/S1359-835X(03)00027-7
  33. Tay, T.E., Chau, F.S. and Er, C.J. (1996), "Bonded boron-epoxy composite repair and reinforcement of cracked aluminium structures", Compos. Struct., 34(3), 339-347. https://doi.org/10.1016/0263-8223(95)00159-X
  34. Chukwujekwu, O.A., Singh, N., Enemouh, U.E. and Rao, S.V. (2005), "Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels", Compos. Struct., 71, 258-70. https://doi.org/10.1016/j.compstruct.2005.02.023
  35. ABAQUS/CAE user's manual (2014), Hibbitt, Karlsson & Sorensen, Inc.
  36. Feddersen, C.E. (1996), "Plane strain crack toughness testing of high strength metallic materials", W.F. Brown and J.E. Srawley, ASTM STP 410, 77-79.
  37. Smith, R.N.L. (1988), "The solution of mixed-mode fracture problems using the boundary element method", Eng. Anal., 5, 75-80. https://doi.org/10.1016/0264-682X(88)90041-X
  38. Ouinas, D., Bachir Bouiadjra, B., Serier, B. and Said-Bekkouche, M. (2007), "Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge", Compos, Struct., 80(4), 514-22. https://doi.org/10.1016/j.compstruct.2006.07.005
  39. Ouinas, D., Bachir Bouiadjra, B., Achour, B. and Benderdouche, N. (2009), "Modelling of a cracked aluminum plate repaired with composite octagonal patch in mode I and mixed mode", Mater. Des., 30(3), 590-5. https://doi.org/10.1016/j.matdes.2008.05.040

Cited by

  1. Analysis of the adhesive damage between composite and metallic adherends: Application to the repair of aircraft structures vol.5, pp.1, 2016, https://doi.org/10.12989/amr.2016.5.1.011
  2. Investigation of patch hybridization effect on the composite patch repair of a cracked aluminum plate: A pragmatic approach pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1432818
  3. Towards hybridization of composite patch in repair of cracked Aluminum panel : Numerical and experimental study vol.10, pp.6, 2016, https://doi.org/10.1108/ijsi-03-2019-0015
  4. Numerical Investigation of the Adhesive Damage Used for the Repair of A5083 H11 Aluminum Structures by Composites Patches vol.44, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/jera.44.22
  5. Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures vol.74, pp.4, 2016, https://doi.org/10.12989/sem.2020.74.4.515
  6. Performance assessment and optimization of hybrid composite patch repair of aircraft structure vol.16, pp.5, 2016, https://doi.org/10.1108/mmms-03-2019-0052
  7. Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites vol.76, pp.5, 2016, https://doi.org/10.12989/sem.2020.76.5.613
  8. The role of patch hybridization on tensile response of cracked panel repaired with hybrid composite patch: experimental and numerical investigation vol.97, pp.1, 2016, https://doi.org/10.1080/00218464.2019.1629911