• Title/Summary/Keyword: contact stresses

Search Result 316, Processing Time 0.025 seconds

Contact non-linear finite element model analysis of initial stability of mini implant (접촉 유한요소모델을 이용한 미니 임플란트의 초기 응력분포 연구)

  • Yoon, Hyun-Joo;Jung, Ui-Won;Lee, Jong-Suk;Kim, Chang-Sung;Kim, Jung-Moon;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Sung-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.681-690
    • /
    • 2007
  • Mini implants had been used provisionally for the healing period of implants in the beginning. But it becomes used for the on-going purpose, because it is simple to use, economic and especially suitable for the overdenture. But there is few studies about the stability of mini implants, that is most important factor for the on-going purpose, and particularly the implant parameters affecting the initial stability. The purpose of this study was to evaluate the stress and the strain distribution pattern of immediate-loaded screw type orthodontic mini-implant and the parameters affecting the initial stability of immediate-loaded mini-implant. Two dimensional finite element models were made and contact non-linear finite element analysis was performed. The magnitude and distribution of Von Mises stresses were evaluated. The obtained results were as follows: 1. The stress was concentrated on the thread tip of an implant in the cortical bone. 2. The direction of load is the most important factor for the stress distribution in cortical bone. 3. The diameter of an implant is the most important factor for the stress distribution in the trabecular bone. In conclusion, if the horizontal load vector is successfully controlled, mini-implants, which diameter is under 3mm, can be used for the on-going purpose.

Viscoelastic Analysis of Osmotic Blistering Behavior of Coating Film

  • Lee, Sang Soon;Park, Myung Kyu
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • The osmotic blistering behavior of polymeric coating film which is in contact with an aqueous environment has been investigated. In this study, the coating film has been assumed to be linearly viscoelastic. Interfacial stresses induced in a laminate model consisting of the viscoelastic film and the elastic substrate as the film absorbs moisture from the ambient environment have been investigated using the time-domain boundary element method. The overall stress intensity factor for interfacial cracks subjected to a uniform osmotic pressure has been computed using the tractions at the crack tip node. The magnitude of stress intensity factors decreases with time due to viscoelastic relaxation, but remains constant at large times.

Influence of indenter shape on nanoindentation: an atomistic study

  • Lai, Chia-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • v.6 no.3
    • /
    • pp.301-316
    • /
    • 2013
  • The influence of indenter geometry on nanoindentation was studied using a static molecular dynamics simulation. Dislocation nucleation, dislocation locks, and dislocation movements during nanoindentation into Al (001) were studied. Spherical, rectangular, and Berkovich indenters were modeled to study the material behaviors and dislocation activities induced by their different shapes. We found that the elastic responses for the three cases agreed well with those predicted from elastic contact theory. Complicated stress fields were generated by the rectangular and Berkovich indenters, leading to a few uncommon nucleation and dislocation processes. The calculated mean critical resolved shear stresses for the Berkovich and rectangular indenters were lower than the theoretical strength. In the Berkovich indenter case, an amorphous region was observed directly below the indenter tip. In the rectangular indenter case, we observed that some dislocation loops nucleated on the plane. Furthermore, a prismatic loop originating from inside the material glided upward to create a mesa on the indenting surface. We observed an unusual softening phenomenon in the rectangular indenter case and proposed that heterogeneously nucleating dislocations are responsible for this.

Study on the Tightening Force and the Friction Coefficient in a Bolt tightened upto the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.33-37
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding is governed by the combined stresses due to the axial force developed in the bolt and the frictional torque developed on the thread in contact with the nut. Consideration is taken account of the fact that the unused portion of the thread has least sectional area being subject to initial yielding. Once yielding has taken place some strain hardening effect will result, Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of common and fine series thread are used for computational purposes. Variation of axial forces and frictional torques vs. the frictional coefficients tare presented together with other plots showing some characteristics of bolt under plastic deformation.

  • PDF

Finite Element Analysis of Primary Cup-Seal in a Clutch Master Cylinder (클러치 마스터실린더 주 컵-시일의 유한요소해석)

  • 임문혁;이재천;구본은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.143-150
    • /
    • 2002
  • The characteristics of rubber cup seal is highly nonlinear due to the nature of the material's non-linearity and large deformation with frictional contact. And the performance of sealing in master cylinders of automobile is one of the most important factors which affects the safety of drivers. The effects of various shape of the primary cup seal in clutch master cylinder was investigated to reduce oil leakage and to obtain a long reliable life. Deformation and distribution of stresses on the primary cup seal against hydraulic oil pressure were analyzed with changing design parameters such as depth and radius in cup-seal. The obtained results indicate that the depth of cup seal plays a major role on deformation resulting in the sealing force to the wall of clutch master cylinder.

Stress Analysis for Tooth Modification of High Speed Gear (응력해석을 통한 고속기어 치형수정에 관한 연구)

  • 이경원;반제삼;김규하;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.816-819
    • /
    • 2002
  • This paper is the study on stress analysis for tooth modification of high speed gear using a finite element method. Gear drives constitute very important mechanisms in transmitting mechanical power processes compromising several cost effective and engineering advantages. The load transmission occurred by the contacting surfaces arises variable elastic deformations which are being evaluated through finite element analysis. The automatic gear design program is developed to model gear shape precisely. This gear design system developed was used by pre-processor of FEM packages. The distribution of stresses at contacting surfaces was examined when gear tooth contacts. And this paper proposes method for the tooth modification after carrying out stress analysis using a finite element method.

  • PDF

Analysis on Particle Shape Characteristics of Jumunjin Sand using Fourier Descriptor (Fourier descriptor를 이용한 주문진표준사의 형상특성분석)

  • Min, Tuk-Ki;Kim, Seong-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1182-1189
    • /
    • 2010
  • The mechanical behavior of a granular material is governed by the applying effective stresses and its skeletal structure which is considered to be the packing of particles giving overall density and degree of anisotropic. Factors that affect soil packing are the particle size, size distribution and shape, and the arrangement of grain contact. Soil particle size and shape are the most important factor, but difficult to quantify. In this study, 2D Fourier analysis is applied to quantify the shape of granular particles. Jumunjin sand was used in the experiment and particle images are captured using an optical microscope. The results showed that three lower order Fourier descriptor are closely related with roundness, sphericity of the granular particle. Also statistical approach is used to determine roundness, form factor, elongation ratio, roughness of Jumunjin sand.

  • PDF

Strength Design Evaluation of the Multi-range Transmission (다단 변속기의 강도설계 검증)

  • Kong, M.G.;Song, C.K.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.12-17
    • /
    • 2011
  • Gears are useful for power transmission due to excellent power transmission performance, low cost, and compactness. In addition, gears have constant speed ratio, compact structure, and excellent efficiency. In order to transmit higher power, the new multi-range transmission requires gears which have greater strength than the existing transmission. This study evaluates stability and durability through gear analysis of the multi-range transmission in commercial vehicles using ROMAX-DESIGNER program. Also, strength design evaluation is carried out by the analysis results which are compared with gear strength theory of AGMA standard. Bending stress and contact stress on gears are lower than their allowable stresses. Therefore, we can evaluate the safety of the gear strength design in multi-range transmission.

Analysis of pile-up/sink-in during spherical indentation for various strain hardening levels

  • Shankar, S.;Loganathan, P.;Mertens, A. Johnney
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • The measurement from the indentation process depends on the amount of pile-up or sink-in around the contact impressions. In this paper, finite element concept is utilized to study the pile-up and sink-in behaviour for the wide range of materials with different young's modulus, yield stresses, strain-hardening exponents and coefficient of friction values. The exact indentation model is created by using the two dimensional axisymmetrical model for simulating the spherical indentation process on the lines of Taljat and Pharr (2004) work. The result shows that during spherical indentation process the amount of pile-up is greatly influenced by the strain hardening exponents in addition to other material properties and depth of penetration. The numerical results from the finite element analysis are also validated using the exact multilinear material properties obtained from the tensile testing for the materials like mild steel, brass and aluminium.

Characteristics of Insulation Degradation in Epoxy Mold Type BCT (에폭시 몰드형 BCT의 절연열화 특성)

  • Song, Jae-Joo;Lee, Jung-Choi;Lim, Sung-Hun;Ko, Seok-Cheol;Han, Byung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.902-908
    • /
    • 2005
  • Various stresses (such as electrical stress, mechanical stress, environmental and electrochemical stress, and defects of structure) result in insulation degradation of epoxy mold type insulators. Since the insulation degradation of BCT(Bushing Current Transformer) and bushing proceeds during fabrication process or operation time due to these causes, various methods to reduce the degradation in their insulation ability have been suggested. In this paper, we investigated surface temperature increment of these insulators due to PD(partial discharge). After the voltage applied into the insulator to generate the artificial PD, the surface temperature of the insulator was measured with non-contact thermometer using infrared rays. It was confirmed through the analysis based on PD experiments that the procession in the insulation degradation of the insulator could be estimated through the measurement of the surface temperature in the insulator.