References
- Bosakov, S.V. (2003), "Solving the contact problem for a rectangular die on an elastic foundation", Int. Appl. Mech., 39(10), 1188-1192. https://doi.org/10.1023/B:INAM.0000010370.17320.f6
- Chan, C.Y., Chen, Y.Y., Chang, S.W. and Chen, C.S. (2011), "Atomistic studies of nanohardness size effects", Int. J. Theor. Appl. Multiscale Mech., 2(1), 62-71. https://doi.org/10.1504/IJTAMM.2011.041174
- Chen, C.S., Wang, C.K. and Chang, S.W. (2008), "Atomistic simulation and investigation of nanoindentation, Contact Pressure and Nanohardness", Interact. Multiscale Mech., 1(4), 411-422. https://doi.org/10.12989/imm.2008.1.4.411
- Ercolessi, F. and Adams, J.B. (1994), "Interatomic potential from first-principles calculations: the force-matching method", Europhysics Lett.26, 583-588. https://doi.org/10.1209/0295-5075/26/8/005
- Fischer-Cripps, A.C. (2011), Nanoindentation, 3rd edition, Spring-Verlag, New York, USA.
- Hirth, J.P. and Lothe, J. (1982), Theory of Dislocations, 2nd edition, John Wiley & Sons, USA.
- Hosford, W.F. (1993), The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, New York, USA.
- Kiely, J.D. and Houston, J.E. (1998), "Nanomechanical properties of Au (111), (001), (110) surface", Phys. Rev. B, 57, 12588. https://doi.org/10.1103/PhysRevB.57.12588
- Lee, Y., Park, J.Y., Kim, S.Y., Jun, S. and Im, S. (2005), "Atomistic simulations of incipient plasticity under Al(111) nanoindentation", Mech. Mater., 37, 1035-1048. https://doi.org/10.1016/j.mechmat.2005.01.004
- Li, J., Vliet, K.J. Van, Zhu, T., Yip, S. and Suresh, S. (2002), "Atomistic mechanism governing elastic limit and incipient plasticity in crystals", Nature, 418, 307-310. https://doi.org/10.1038/nature00865
- Liang, H.Y., Woo, C.H., Huang Hanchen, Ngan, A.H.W. and Yu, T.X. (2003), "Dislocation nucleation in the initial stage during nanoindentation", Philos. Mag., 83, 3609-3622. https://doi.org/10.1080/14786430310001605579
- Liang, H., Woo, C.H., Huang, H., Ngan, A.H.W. and Yu, T.X. (2004), "Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation", Comput. Model. Eng. Sci., 6(1), 105-114.
- Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M. and Nix, W.D. (2003), "Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation", J. Mech. Phys. Solids, 51, 901-920. https://doi.org/10.1016/S0022-5096(02)00119-9
- Press, W.H., Vetterling, W.T., Teukolsky, S.A. and Flannery, B.P. (2000), Numerical recipes in C++: The Art of Scientific Computing, Cambridge University Press, Cambridge. UK.
- Tadmor, E.B. and Miller, R.E. (2011), Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press.
- Vliet, K.J.V., Li, J., Zhu, T.,Yip, S. and Suresh, S. (2003), "Quantifying the early stages of plasticity through nanoscale experiments and simulations", Phys. Rev. B, 67, 104105. https://doi.org/10.1103/PhysRevB.67.104105
- Zimmerman, J.A., Kelchner, C.L., Klein, P.A., Hamilton, J.C. and Foiles, S.M. (2001), "Surface step effects on nanoindentation", Phys. Rev. Lett., 87, 165507. https://doi.org/10.1103/PhysRevLett.87.165507
Cited by
- Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543