• Title/Summary/Keyword: contact effect

Search Result 3,294, Processing Time 0.032 seconds

Heat Conduction Analysis of Spreaders with Concentrated Heat Sources-Thermal Concentration Effect in Cooling Electronic Devices- (집중열원이 있는 방산판의 열전도 해석-전자부품 냉각에서의 열집중 현상-)

  • 최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.726-733
    • /
    • 1989
  • Conduction heat transfer in heat spreaders with concentrated heat sources is analyzed by finite element method calculation and the results are compared to analytical solutions for simplified cases. The local temperature rise is dependent on the heat flux, thermal conductivity of the spreader material, and the contact size of the heat source. The effect of the adjacency of other heat sources is also examined.

Effect of Dispersion of Silver Particles on the Electrical Conduction in Silver-Polymer Composites. (Silver-polyner 적합도전류물에서 은립자의 분석상태가 전기운도에 미치는 영향)

  • 김한성;김재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.55-62
    • /
    • 1988
  • The variation of electrical resistivity of silver particle-filled polymers with the volume percent of silver particles was investigated. Also, the relationships between the surface tension of polymer and dispersion effect of silver particles were studied to find the steep drop of electrical resisivity, in view of agglomerate morphology. The critical volume precent of silver particles varied depending on the polymer species and increased with the increasing surface tension of polymer. The steep variation of resistivity with the increasing temperature was explained with the expansion of polymer at the melting temperature of polymer. The conductive break down current increased with the increasing volume percent of silver particles in the Ag/LDPE system and that was attributed to heat of Joule taken througn the contact area between the silver particle.

  • PDF

Simulation of metal-semiconductor contact properties for high-performance monolayer MoS2 field effect transistor

  • Park, Ji-Hun;U, Yeong-Jun;Seo, Seung-Beom;Choe, Seong-Yul
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.299-304
    • /
    • 2016
  • 2차원 반도체 소재의 경우 물질종류마다 내포하고 있는 고유결함에 의해서 Fermi-Level Pinning 이 발생하여 이로 인한 Schottky Barrier transistor로 동작을 하게 되며, 이는 접합부에 Carrier Injection 정도와 Schottky Barrier을 통과하는 Tunneling 정도에 의해서 소자의 특성이 결정 된다. 본 연구에서는 시뮬레이션을 통하여 2차원 반도체인 $MoS_2$소자를 설계하고, S/D Doping에 따라 접촉 저항 개선 효과와 소자의 동작특성이 어떠한 영향을 미치는지 연구하여 최대 $250cm^2/V{\cdot}sec$의 field effect mobility 의 결과를 얻었다. 또한 S/D doping 에 따라 각 저항 성분의 영향을 분석하였으며 면저항 및 접촉 저항 둘 다 doping 농도가 증가함에 따라 감소하는 결과를 나타내며, S/D doping의 영향은 접촉저항에서 더 크게 나타났다. 더불어 2차원 반도체의 Resistance network model 을 제안하여 subthreshold 영역에서는 $R_{ic}$, saturation 영역에서는 $R_{ish}$ 가 전체저항에서 주요한 변수로 전체저항식에 포함되어야 한다는 것을 시뮬레이션을 통해서 검증하였다.

  • PDF

The Application of Metallic Thin Film for Tep Electrode of Poly-Si Solar Cell (다결정 실리콘 태양전지의 상부 전극용 금속 박막 적용)

  • 김상수;임동건;심경석;이준신;김흥우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.202-205
    • /
    • 1997
  • We investigated grain boundary effect for terrestrial applications of solar cell\ulcorner with low cost, large area, and high efficiency. Grain boundaries are known as potential barriers and recombination centers for the photo-generated charge carriers, which make it difficult to achieve a high efficiency cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatments, various grid patterns, selective wet etchings for grain boundaries, buried contact metallizations along grain boundaries, and use of metallic thin films. From the various grid patterns we learned that the series resistance of solar cell reduced open circuit voltage and consequently decreased the cell efficiency. This paper describes the effect of various grid patterns and the employment of metallic thin films for a top electrode.

  • PDF

Measurement of Vibration Signals of a Gun Barrel Type Structure using Mechanical Filter (기계적 필터를 이용한 포신형상 구조물의 진동신호 측정)

  • Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.440-443
    • /
    • 2010
  • This paper deals with the method of vibration measurement of a gun barrel structure using mechanical filter. When a bullet with high speed is moving within a gun barrel type structure with low bending vibration frequencies, it is difficult to measure the bending vibration signals of the structure. For example, noncontact type sensors such as displacement or velocity sensor are not appropriate for the measurement of vibrational signals because of the movement effect of the equipment frame through the moving structures or effect of the ground vibration. One of contact type sensors such as accelerometer is profitable for measurement of vibrational signals because of its wide measurement ranges. In the case of a gun barrel structure including high vibrational signals like shock waves, however, it is necessary to propose vibration measurement method filtering high frequencies. The purpose of the paper is to propose the proper vibrational measurement technique filtering high frequencies of a gun barrel type structure.

Effect of PVA Brush Contamination on Post-CMP Cleaning Performance (Post-CMP Cleaning에서 PVA 브러시 오염이 세정 효율에 미치는 영향)

  • Cho, Han-Chul;Yuh, Min-Jong;Kim, Suk-Joo;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • PVA (polyvinyl alcohol) brush cleaning method is a typical cleaning method for semiconductor cleaning process especially post-CMP cleaning. PVA brush contacts with the wafer surface and abrasive particle, generating the contact rotational torque of the brush, which is the removal mechanism. The brush rotational torque can overcome theoretically the adhesion force generated between the abrasive particle and wafer by zeta potential. However, after CMP (chemical mechanical polishing) process, many particles remained on the wafer because the brush was contaminated in previous post-CMP cleaning step. The abrasive particle on the brush redeposits to the wafer. The level of the brush contamination increased according to the cleaning run time. After cleaning the brush, the level of wafer contamination dramatically decreased. Therefore, the brush cleanliness effect on the cleaning performance and it is important for the brush to be maintained clearly.

Fabrication and Electrical Properties of CuPc FET with Different Substrate Temperature (CuPc FET의 기판온도에 따른 제작 및 전기적 특성 연구)

  • Lee, Ho-Shik;Park, Yong-Pil;Lim, Eun-Ju;Iwamot, Mistumasa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.488-489
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

  • PDF

Dynamic Elastohydrodynamic Film Thickness in Rocker-Arm Valve Train System (로커암 밸브 트레인의 동적 탄성유체윤활 유막 연구)

  • 이희락;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.397-405
    • /
    • 2000
  • Many computational researches have been performed about EHL film thickness in the contact between cam and follower. However, those computations do not explain the characteristics of dynamic film thickness which means squeeze film effect. Without the consideration of transient term in the Reynold's equation, the predicted film thickness has large difference from the actual film thickness. In this study, we have investigated the kinematic and dynamic simulations of rocker-arm valve train system. From the simulation, the applied load and the entraining velocity of the lubricant between cam and follower are obtained and with these values the dynamic film thickness is computed by Newton-Raphson method and compared with the steady state film thickness.

  • PDF

Cold Roll Bonding of (Ag-10% Ni)/Cu Clad Metals ((Ag-10 % Ni)/Cu 접점재의 냉간압연접합)

  • 김종헌;김성일;박상용
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.136-144
    • /
    • 1997
  • (Ag-10%Ni)/Cu clad metals for electric contact switch were fabricated by cold-roll bonding process. 2 or 3 passes of cold-rolling was carried out for each process to investigate the effect of the rolling passes on the bonding property. The effect of the annealing temperature of copper before the cold-roll bonding on the bond strength was also studied. The specimen bonded with copper annealed below 30$0^{\circ}C$ before roll bonding showed good bond strength. This is because high stored energy in copper promoted the short range diffusion and the grain refinement of copper by the static recrystallization increased the degree of the interfacial coherency. The maximum peel strength of clad metals bonded with Cu annealed below 30$0^{\circ}C$ was 120N.

  • PDF

Effect of Surface Roughness on Frictional Behavior of Sheet Steel for Automotive (자동차용 냉연 강판의 표면 거칠기에 따른 마찰 특성 분석)

  • Han, S.S.;Park, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.401-406
    • /
    • 2008
  • The frictional behavior of stamping process is a function of interface parameters such as sheet and tool material, lubricant, surface roughness, contact pressure, sliding speed etc. Among these parameters the thing that can be controlled by a steel maker is the surface roughness of sheet. In this study, effects of surface roughness on the frictional behavior of steel sheet for automotive were investigated to find out the way to improve the frictional characteristics of steel sheet. The cold rolled steel sheets with various surface roughnesses were prepared for the test. The flat type friction test was conducted with different lubricant conditions. The surface roughness effect on frictional behavior depends on the viscosity of lubricant. The frictional characteristic of steel sheet was influenced by the amplitude of roughness as well as the shape of that.