• Title/Summary/Keyword: contact angle test

Search Result 355, Processing Time 0.027 seconds

Effect of Talc Content on the Physical Properties of the Epoxy Resins in Conservation Treatment of Stone Monument (석조문화재 보존처리용 에폭시수지 물성에 미치는 탈크 함량의 영향)

  • Kim, Da-Ram;Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 2009
  • The physical properties of the epoxy resins were studied with an addition of filler content and the application of artificial weathering test. When talc as a filler was added to the epoxy resin (L-30), the water resistance seemed to be increased because of the results of the reducing of water absorption rate and the increasing of contact angle. Although the adhesive strength of epoxy resins was not affected by the increasing amount of talc, its compressive strength was reduced. The physical properties of the epoxy resins had different trends according to the site environments. The artificial weathering test with the change of temperature and humidity showed that the changes of water absorption rate and colour differences of the epoxy resins containing talc were lower than the pure epoxy resin itself. However, the contact angle was higher. The artificial weathering test with ultraviolet irradiations showed the opposite result; the damage of epoxy resins was increased with the increasing of talc content. These mean the site environment of the stone monuments should be considered to determine the content of talc added to increase the durability of epoxy resin.

  • PDF

Study on the Flow Characteristics of the Epoxy Resin w.r.t. Sizing Materials of Carbon Fibers (탄소섬유 사이징에 따른 에폭시 수지 유동 특성에 관한 연구)

  • Lim, Su-Hyun;On, Seung Yoon;Kim, Seong-Su
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.379-384
    • /
    • 2018
  • This paper aims to study flow characteristics of epoxy resin w.r.t. the sizing agents treated on the carbon fibers which have the same surface morphologies before sizing treatment. Dynamic contact angle (DCA) was measured to evaluate wettability of a single carbon fiber. Wicking test and Vacuum Assisted Resin Transfer Molding (VARTM) were performed to find relation between DCA measurement results and impregnation characteristics. In addition, surface properties of the carbon fibers such as surface free energy and chemical compositions were measured and interfacial shear strength (IFSS) between the carbon fiber and the resin were experimentally characterized by using micro-droplet tests. According to these experimental results, the sizing agent for carbon fibers should have appropriate level of surface free energy and good chemical compatibility with the resin to reconcile resin flow characteristics and interfacial strength.

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Linear Cutting Simulation for Granite using Discrete Element Method (이산요소법을 이용한 화강암의 선형절삭 시뮬레이션)

  • Jun, Chul-Woong;Sohn, Jeong-Hyun;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2016
  • The pick cutter, which directly contacts and crushes the rock, is the expendable part of a roadheader. The arrangement and angle of attachment of the pick cutter are important factors that determine excavator performance. It is necessary to numerically calculate the contact between the pick cutter and rock. The rock is defined as a set of particles using the discrete element method. The parallel bond model is used to define the bonds between particles. The properties of granite that are measured by the uniaxial compressive test are applied to the numerical rock model. The pick cutter is defined by the polygon elements. The linear cutting simulation is considered to simulate the contact between the pick cutter and rock. The results of the simulation show the rock breaking due to contact with the pick cutter.

Fatigue Life Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로수명 평가)

  • Um, Ju-Hwan;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.169-173
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue life evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable far fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation far the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type, And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%) more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective fur ensure against fatigue risks.

Fatigue Behavior Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로거동 평가)

  • Song, Sun-Ok;Eom, Mac;Yang, Shin-Chu;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.447-453
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue behavior evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable for fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation for the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type. And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%)more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective for ensure against fatigue risks.

  • PDF

Ion Release and Biocompatibility of Sintered Ni-Cr-Ti Alloy for Dental Prosthodontics (치과보철용 Ni-Cr-Ti소결체합금의 이온용출과 생체적합성)

  • Choe, Han-Cheol;Kim, Seung-Hui
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, ion release and biocompatibility of sintered Ni-Cr-Ti alloy for dental prosthodontics have been researched by corrosion and cell culture test. The microstructures of the alloys were observed by optical microscope, and corrosion behavior was investigated using potentiostat (Model PARSTAT 2273, EG&G, USA). Cell culture was carried out using hGf cell in DMEM (Welgene Inc., South Korea) supplemented with 10% fetal bovine serum (FBS) (Welgene Inc., South Korea) and antibiotic antimycotic solution (Welgene Inc., South Korea). After corrosion and cell culture test, surface morphologies were observed by field-emission scanning electron microscopy. For wettability behaviors, contact angles were measured by wettability test. As the content of Ti increased, the number of pit decreased and the corrosion resistance was improved from anodic polarization test, also, polarization resistance of samples containing Ti remarkably improved as compared with the alloy not containing Ti. The sintered alloy showed a low contact angle due to the pores formed on the surface. The addition of Ti element showed that the cell survival rate was better than that of the control group.

Gait Analysis of Bilateral Lower Limb Amputee with Incline Training on Treadmill (트레드밀에서 경사 훈련을 실시한 양쪽 하지절단환자의 보행분석)

  • Ahn, Wang-Hun;Cho, Young-Ki;Park, Yi-Su
    • Journal of Korean Physical Therapy Science
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2005
  • The purpose of this report was to describe the gait pattern and parameters of the complicated bilateral amputee with right transtibial and left tarsometatarsal amputation. Using a Vicon 370 three dimensional gait analysis system, the gait analysis was performed at pre and post-test. Treadmill Training with 15 degree, incline was practiced for 8weeks, 3times per week. In linear parameters, the Velocity, Stride length and Single limb support were increased than pre-test. but Cadence and Double limb support were less post-test than pre-test. In kinematics, the maximal pelvic tilt angle showed right side $21.87^{\circ}$, left side $20.67^{\circ}$ at pre-swing phase, and decreased as compared with pre-test. Especially, the inimal hip flexion angle showed right side $-6.83^{\circ}$, left side $1.52^{\circ}$ at pre-swing phase and increased as compared with pre-test. The maximal knee flexion angle disclosed right side $2.66^{\circ}$, left side $21.71^{\circ}$ at stance phase, and decreased as compared with pre-test. In kinetics, the hip extension moment on initial contact stage was right side 0.938NM/Kg, left side 0.09NM/Kg, which was impaired compared with normal person.

  • PDF

Mechanical Splicing Characteristic of the Threaded Bar according to the Contact Conditions of the Transverse Rib (마디접촉조건에 따른 나사철근의 기계식 이음 특성)

  • Kim, J.M.;Choi, S.W.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.145-153
    • /
    • 2019
  • The objective of this study is to analyze the mechanical splicing characteristic of the threaded bar according to the contact conditions of the transverse rib. In order to consider the contact conditions of the rib, selection of the main variables including the gap of the core diameter ($l_c$), rib angle (${\theta}$), and the number of contacts ($C_N$) of transverse rib was done. So as to analyze the splicing characteristic of the D51 threaded bar, a finite element (FE) simulation of the tensile test was conducted using the designed D51 threaded bar and coupler. Through FE simulation results, it was verified that the mechanical slicing characteristics varied based on the main design variables ($l_c$, ${\theta}$, and $C_N$). It was further confirmed that it was important to determine the $C_N$ in consideration of $l_c$. Additionally, the tensile test results of the D25 and D51 threaded bar combined with the couplers were similar to FE simulation results. Furthermore, to quantitatively evaluate FE simulation and test results, the calculation equation for the contacted projection area ratio (R) of the transverse rib was proposed. To secure a mechanical splicing joint of the threaded bar, it was established that the R calculated using the proposed equation had to be greater or equal to 40%.

Jewelry Model Cast Elements Evolution with Alignment Angle in DuraForm Rapid Prototyping (쾌속조형 듀라폼 성형체에서의 배치각 변화에 따른 주얼리주조모형의 형상요소변화)

  • Joo, Young-Cheol;Song, Oh-Sung
    • Journal of Korea Foundry Society
    • /
    • v.21 no.5
    • /
    • pp.290-295
    • /
    • 2001
  • We fabricated test samples containing various shape elements and surface roughness checking points for the jewelry cast master patterns by employing the 3D computer aided design (CAD), selective laser sintering (SLS) rapid prototype (RP) with the DuraForm powders. We varied the alignment angle from $0^{\circ}$ to $10^{\circ}$ at a given layer thickness of 0.08 and 0.1mm, respectively, in RP operation. Dimensions of the shape elements as well as values of surface roughness are characterized by an optical microscope and a contact-scanning profilometer. Surface roughness values of the top and vertical face increased as the alignment angle increased, while the other roughness values and shape elements variation were not depending on the alignment angle. The resolution of the shape realization was enhanced as the layer thickness became smaller. The minimum diameter of the hole, common in jewelry design, was 1.2 mm, and the shrinkage became 12% at the 1.6 mm-diameter hole, Our results implied that we face down the proposed design elements with $0^{\circ}$ alignment angle, and consider the shrinkage effect of each shape element in DuraForm RP jewelry modeling.

  • PDF