DOI QR코드

DOI QR Code

Study on the Flow Characteristics of the Epoxy Resin w.r.t. Sizing Materials of Carbon Fibers

탄소섬유 사이징에 따른 에폭시 수지 유동 특성에 관한 연구

  • Received : 2018.07.31
  • Accepted : 2018.11.01
  • Published : 2018.12.31

Abstract

This paper aims to study flow characteristics of epoxy resin w.r.t. the sizing agents treated on the carbon fibers which have the same surface morphologies before sizing treatment. Dynamic contact angle (DCA) was measured to evaluate wettability of a single carbon fiber. Wicking test and Vacuum Assisted Resin Transfer Molding (VARTM) were performed to find relation between DCA measurement results and impregnation characteristics. In addition, surface properties of the carbon fibers such as surface free energy and chemical compositions were measured and interfacial shear strength (IFSS) between the carbon fiber and the resin were experimentally characterized by using micro-droplet tests. According to these experimental results, the sizing agent for carbon fibers should have appropriate level of surface free energy and good chemical compatibility with the resin to reconcile resin flow characteristics and interfacial strength.

본 연구에서는 동일한 표면 형태를 가지는 탄소섬유에 다양한 사이징제를 처리함에 따라 발생하는 에폭 시 수지의 유동 특성 변화를 분석하였다. 동적 접촉각(DCA) 측정을 통해 단일 탄소섬유의 젖음성(Wettability)을 측정하였다. DCA 측정 결과와 함침 특성 간의 연관성을 살피기 위해 Wicking test와 VARTM test를 수행하였다. 추가적으로, 탄소섬유의 표면 에너지 등 다양한 표면 특성을 분석하였으며 Micro-droplet test를 통해 수지와 탄소섬유계면의 계면전단강도를 측정하였다. 이러한 실험 결과를 기반으로, 함침 속도의 증대를 위해서는 탄소섬유의 사이징제가 적정 수준의 표면 에너지를 가져야 하며, 사이징제의 화학적 조성을 조정하여 에폭시 수지의 유동 특성과 계면전단강도가 모두 개선 가능함을 확인하였다.

Keywords

BHJRB9_2018_v31n6_379_f0001.png 이미지

Fig. 1. DCA measurement setup

BHJRB9_2018_v31n6_379_f0002.png 이미지

Fig. 2. Wicking test setup

BHJRB9_2018_v31n6_379_f0003.png 이미지

Fig. 3. VARTM test setup

BHJRB9_2018_v31n6_379_f0004.png 이미지

Fig. 4. Mold configuration

BHJRB9_2018_v31n6_379_f0005.png 이미지

Fig. 5. Surface free energy of Neat CF

BHJRB9_2018_v31n6_379_f0006.png 이미지

Fig. 6. Interfacial shear strength of Neat CF

BHJRB9_2018_v31n6_379_f0007.png 이미지

Fig. 7. DCA measurement Experimental case 1

BHJRB9_2018_v31n6_379_f0008.png 이미지

Fig. 8. DCA measurement Experimental case 2 (Test liquid : Distilled water)

BHJRB9_2018_v31n6_379_f0009.png 이미지

Fig. 9. DCA measurement Experimental case 2 (Test liquid :Epoxy resin)

BHJRB9_2018_v31n6_379_f0010.png 이미지

Fig. 10. DCA measurement Experimental case 2 (Test liquid :Epoxy resin & Hardener solution)

BHJRB9_2018_v31n6_379_f0011.png 이미지

Fig. 11. Wicking test results; (a) A-NCF, (b) B-NCF, (c) C-NCF

BHJRB9_2018_v31n6_379_f0012.png 이미지

Fig. 12. VARTM test results

Table 1. Carbon fiber and fabric

BHJRB9_2018_v31n6_379_t0001.png 이미지

Table 2. Plasma treatment condition

BHJRB9_2018_v31n6_379_t0002.png 이미지

References

  1. Vega, M.J., et al., "Dynamics of the Rise Around a Fiber: Experimental Evidence of the Existence of Several Time Scales," Langmuir, Vol. 21, No. 21, 2005, pp. 9584-9590. https://doi.org/10.1021/la051341z
  2. Qiu, S., et al., "Wettability of a Single Carbon Fiber," Langmuir, Vol. 32, No. 38, 2016, pp. 9697-9705. https://doi.org/10.1021/acs.langmuir.6b02072
  3. Han, S.H., et al., "Study on High-speed RTM to Reduce the Impregnation Time of Carbon/epoxy Composites," Composite Structures, Vol. 119, 2015, pp. 50-58. https://doi.org/10.1016/j.compstruct.2014.08.023
  4. Bismarck, A., Kumru, M.E., and Springer, J., "Influence of Oxygen Plasma Treatment of PAN-based Carbon Fibers on Their Electrokinetic and Wetting Properties," Journal of Colloid and Interface Science, Vol. 210, No. 1, 1999, pp. 60-72. https://doi.org/10.1006/jcis.1998.5912
  5. Luo, Y., Zhao, Y., Duan, Y., and Du, S., "Surface and Wettability Property Analysis of CCF300 Carbon Fibers with Different Sizing or Without Sizing," Materials & Design, Vol. 32, No. 2, 2011, pp. 941-946. https://doi.org/10.1016/j.matdes.2010.08.004
  6. Nagayama, G., and Cheng, P., "Effect of Interface Wettability on Microscale Flow by Molecular Dynamics Simulation," International Journal of Heat and Mass Transfer, Vol. 47, No. 3, 2004, pp. 501-513. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.013